

Coverage.py

Coverage.py is a tool for measuring code coverage of Python programs. It
monitors your program, noting which parts of the code have been executed, then
analyzes the source to identify code that could have been executed but was not.

Coverage measurement is typically used to gauge the effectiveness of tests. It
can show which parts of your code are being exercised by tests, and which are
not.

The latest version is coverage.py 7.2.6, released May 23, 2023. It is
supported on:

	Python versions 3.7 through 3.12.0b1.

	PyPy3 7.3.11.

For Enterprise

[image: Tidelift]
 [https://tidelift.com/subscription/pkg/pypi-coverage?utm_source=pypi-coverage&utm_medium=referral&utm_campaign=readme]Available as part of the Tidelift Subscription. [https://tidelift.com/subscription/pkg/pypi-coverage?utm_source=pypi-coverage&utm_medium=referral&utm_campaign=docs]

Coverage and thousands of other packages are working with
Tidelift to deliver one enterprise subscription that covers all of the open
source you use. If you want the flexibility of open source and the confidence
of commercial-grade software, this is for you. Learn more. [https://tidelift.com/subscription/pkg/pypi-coverage?utm_source=pypi-coverage&utm_medium=referral&utm_campaign=docs]

Quick start

Getting started is easy:

	Install coverage.py:

$ python3 -m pip install coverage

For more details, see Installation.

	Use coverage run to run your test suite and gather data. However you
normally run your test suite, you can use your test runner under coverage.

Tip

If your test runner command starts with “python”, just replace the initial
“python” with “coverage run”.

python something.py becomes coverage run something.py

python -m amodule becomes coverage run -m amodule

Other instructions for specific test runners:

	pytest

If you usually use:

$ pytest arg1 arg2 arg3

then you can run your tests under coverage with:

$ coverage run -m pytest arg1 arg2 arg3

Many people choose to use the pytest-cov [https://pytest-cov.readthedocs.io/] plugin, but for most
purposes, it is unnecessary.

	unittest

Change “python” to “coverage run”, so this:

$ python -m unittest discover

becomes:

$ coverage run -m unittest discover

To limit coverage measurement to code in the current directory, and also
find files that weren’t executed at all, add the --source=. argument to
your coverage command line.

	Use coverage report to report on the results:

$ coverage report -m
Name Stmts Miss Cover Missing

my_program.py 20 4 80% 33-35, 39
my_other_module.py 56 6 89% 17-23

TOTAL 76 10 87%

	For a nicer presentation, use coverage html to get annotated HTML
listings detailing missed lines:

$ coverage html

Then open htmlcov/index.html in your browser, to see a
report like this [https://nedbatchelder.com/files/sample_coverage_html/index.html].

Capabilities

Coverage.py can do a number of things:

	By default it will measure line (statement) coverage.

	It can also measure branch coverage.

	It can tell you what tests ran which lines.

	It can produce reports in a number of formats: text,
HTML, XML, LCOV,
and JSON.

	For advanced uses, there’s an API, and the result data is
available in a SQLite database.

Using coverage.py

There are a few different ways to use coverage.py. The simplest is the
command line, which lets you run your program and see the results.
If you need more control over how your project is measured, you can use the
API.

Some test runners provide coverage integration to make it easy to use
coverage.py while running tests. For example, pytest [http://doc.pytest.org] has the pytest-cov [https://pytest-cov.readthedocs.io/]
plugin.

You can fine-tune coverage.py’s view of your code by directing it to ignore
parts that you know aren’t interesting. See Specifying source files and Excluding code from coverage.py
for details.

Getting help

If the FAQ doesn’t answer your question, you can discuss
coverage.py or get help using it on the Python discussion forums [https://discuss.python.org/]. If you
ping me (@nedbat), there’s a higher chance I’ll see the post.

Bug reports are gladly accepted at the GitHub issue tracker [https://github.com/nedbat/coveragepy/issues].
GitHub also hosts the code repository [https://github.com/nedbat/coveragepy].

Professional support for coverage.py is available as part of the Tidelift
Subscription [https://tidelift.com/subscription/pkg/pypi-coverage?utm_source=pypi-coverage&utm_medium=referral&utm_campaign=docs].

I can be reached [https://nedbatchelder.com/site/aboutned.html] in a number of ways. I’m happy to answer questions about
using coverage.py.

For news and other chatter, follow the project on Mastodon:
@coveragepy@hachyderm.io.

More information

	Installation

	For enterprise [https://tidelift.com/subscription/pkg/pypi-coverage?utm_source=pypi-coverage&utm_medium=referral&utm_campaign=enterprise]

	Command line usage

	Configuration reference

	Specifying source files

	Excluding code from coverage.py

	Branch coverage measurement

	Measuring sub-processes

	Measurement contexts

	Coverage.py API

	How coverage.py works

	Plug-ins

	Contributing to coverage.py

	Things that cause trouble

	FAQ and other help

	Change history

	Migrating between versions

	Sleepy Snake

Installation

You can install coverage.py in the usual ways. The simplest way is with pip:

$ python3 -m pip install coverage

C Extension

Coverage.py includes a C extension for speed. It is strongly recommended to use
this extension: it is much faster, and is needed to support a number of
coverage.py features. Most of the time, the C extension will be installed
without any special action on your part.

You can determine if you are using the extension by looking at the output of
coverage --version:

$ coverage --version
Coverage.py, version 7.2.6 with C extension
Documentation at https://coverage.readthedocs.io/en/7.2.6

The first line will either say “with C extension,” or “without C extension.”

If you are missing the extension, first make sure you have the latest version
of pip in use when installing coverage.

If you are installing on Linux, you may need to install the python-dev and gcc
support files before installing coverage via pip. The exact commands depend on
which package manager you use, which Python version you are using, and the
names of the packages for your distribution. For example:

$ sudo apt-get install python-dev gcc
$ sudo yum install python-devel gcc

$ sudo apt-get install python3-dev gcc
$ sudo yum install python3-devel gcc

A few features of coverage.py aren’t supported without the C extension, such
as concurrency and plugins.

Checking the installation

If all went well, you should be able to open a command prompt, and see
coverage.py installed properly:

$ coverage --version
Coverage.py, version 7.2.6 with C extension
Documentation at https://coverage.readthedocs.io/en/7.2.6

You can also invoke coverage.py as a module:

$ python -m coverage --version
Coverage.py, version 7.2.6 with C extension
Documentation at https://coverage.readthedocs.io/en/7.2.6

Command line usage

When you install coverage.py, a command-line script called coverage is
placed on your path. To help with multi-version installs, it will also create
a coverage3 alias, and a coverage-X.Y alias, depending on the version
of Python you’re using. For example, when installing on Python 3.7, you will
be able to use coverage, coverage3, or coverage-3.7 on the command
line.

Coverage.py has a number of commands:

	run – Run a Python program and collect execution data.

	combine – Combine together a number of data files.

	erase – Erase previously collected coverage data.

	report – Report coverage results.

	html –
Produce annotated HTML listings with coverage results.

	xml – Produce an XML report with coverage results.

	json – Produce a JSON report with coverage results.

	lcov – Produce an LCOV report with coverage results.

	annotate –
Annotate source files with coverage results.

	debug – Get diagnostic information.

Help is available with the help command, or with the --help switch on
any other command:

$ coverage help
$ coverage help run
$ coverage run --help

Version information for coverage.py can be displayed with
coverage --version:

$ coverage --version
Coverage.py, version 7.2.6 with C extension
Documentation at https://coverage.readthedocs.io/en/7.2.6

Any command can use a configuration file by specifying it with the
--rcfile=FILE command-line switch. Any option you can set on the command
line can also be set in the configuration file. This can be a better way to
control coverage.py since the configuration file can be checked into source
control, and can provide options that other invocation techniques (like test
runner plugins) may not offer. See Configuration reference for more details.

Execution: coverage run

You collect execution data by running your Python program with the run
command:

$ coverage run my_program.py arg1 arg2
blah blah ..your program's output.. blah blah

Your program runs just as if it had been invoked with the Python command line.
Arguments after your file name are passed to your program as usual in
sys.argv. Rather than providing a file name, you can use the -m switch
and specify an importable module name instead, just as you can with the
Python -m switch:

$ coverage run -m packagename.modulename arg1 arg2
blah blah ..your program's output.. blah blah

Note

In most cases, the program to use here is a test runner, not your program
you are trying to measure. The test runner will run your tests and coverage
will measure the coverage of your code along the way.

There are many options:

$ coverage run --help
Usage: coverage run [options] <pyfile> [program options]

Run a Python program, measuring code execution.

Options:
 -a, --append Append coverage data to .coverage, otherwise it starts
 clean each time.
 --branch Measure branch coverage in addition to statement
 coverage.
 --concurrency=LIBS Properly measure code using a concurrency library.
 Valid values are: eventlet, gevent, greenlet,
 multiprocessing, thread, or a comma-list of them.
 --context=LABEL The context label to record for this coverage run.
 --data-file=OUTFILE Write the recorded coverage data to this file.
 Defaults to '.coverage'. [env: COVERAGE_FILE]
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 -m, --module <pyfile> is an importable Python module, not a script
 path, to be run as 'python -m' would run it.
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 -L, --pylib Measure coverage even inside the Python installed
 library, which isn't done by default.
 -p, --parallel-mode Append the machine name, process id and random number
 to the data file name to simplify collecting data from
 many processes.
 --source=SRC1,SRC2,...
 A list of directories or importable names of code to
 measure.
 --timid Use a simpler but slower trace method. Try this if you
 get seemingly impossible results!
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

If you want branch coverage measurement, use the --branch
flag. Otherwise only statement coverage is measured.

You can specify the code to measure with the --source, --include, and
--omit switches. See Specifying source files for
details of their interpretation. Remember to put options for run after “run”,
but before the program invocation:

$ coverage run --source=dir1,dir2 my_program.py arg1 arg2
$ coverage run --source=dir1,dir2 -m packagename.modulename arg1 arg2

Note

Specifying --source on the coverage run command line won’t affect
subsequent reporting commands like coverage xml. Use the source setting in the configuration file to apply the setting
uniformly to all commands.

Coverage.py can measure multi-threaded programs by default. If you are using
more other concurrency support, with the multiprocessing [https://docs.python.org/3/library/multiprocessing.html], greenlet [https://greenlet.readthedocs.io/],
eventlet [http://eventlet.net/], or gevent [http://www.gevent.org/] libraries, then coverage.py can get confused. Use the
--concurrency switch to properly measure programs using these libraries.
Give it a value of multiprocessing, thread, greenlet, eventlet,
or gevent. Values other than thread require the C extension.

You can combine multiple values for --concurrency, separated with commas.
You can specify thread and also one of eventlet, gevent, or
greenlet.

If you are using --concurrency=multiprocessing, you must set other options
in the configuration file. Options on the command line will not be passed to
the processes that multiprocessing creates. Best practice is to use the
configuration file for all options.

If you are measuring coverage in a multi-process program, or across a number of
machines, you’ll want the --parallel-mode switch to keep the data separate
during measurement. See Combining data files: coverage combine below.

You can specify a static context for a coverage run with
--context. This can be any label you want, and will be recorded with the
data. See Measurement contexts for more information.

By default, coverage.py does not measure code installed with the Python
interpreter, for example, the standard library. If you want to measure that
code as well as your own, add the -L (or --pylib) flag.

If your coverage results seem to be overlooking code that you know has been
executed, try running coverage.py again with the --timid flag. This uses a
simpler but slower trace method, and might be needed in rare cases.

Coverage.py sets an environment variable, COVERAGE_RUN to indicate that
your code is running under coverage measurement. The value is not relevant,
and may change in the future.

These options can also be set in the [run] section of your
.coveragerc file.

Warnings

During execution, coverage.py may warn you about conditions it detects that
could affect the measurement process. The possible warnings include:

	Couldn’t parse Python file XXX (couldnt-parse)
	During reporting, a file was thought to be Python, but it couldn’t be parsed
as Python.

	Trace function changed, data is likely wrong: XXX (trace-changed)
	Coverage measurement depends on a Python setting called the trace function.
Other Python code in your product might change that function, which will
disrupt coverage.py’s measurement. This warning indicates that has happened.
The XXX in the message is the new trace function value, which might provide
a clue to the cause.

	Module XXX has no Python source (module-not-python)
	You asked coverage.py to measure module XXX, but once it was imported, it
turned out not to have a corresponding .py file. Without a .py file,
coverage.py can’t report on missing lines.

	Module XXX was never imported (module-not-imported)
	You asked coverage.py to measure module XXX, but it was never imported by
your program.

	No data was collected (no-data-collected)
	Coverage.py ran your program, but didn’t measure any lines as executed.
This could be because you asked to measure only modules that never ran,
or for other reasons.

To debug this problem, try using run --debug=trace to see the tracing
decision made for each file.

	Module XXX was previously imported, but not measured (module-not-measured)
	You asked coverage.py to measure module XXX, but it had already been imported
when coverage started. This meant coverage.py couldn’t monitor its
execution.

	Already imported a file that will be measured: XXX (already-imported)
	File XXX had already been imported when coverage.py started measurement. Your
setting for --source or --include indicates that you wanted to
measure that file. Lines will be missing from the coverage report since the
execution during import hadn’t been measured.

	--include is ignored because --source is set (include-ignored)
	Both --include and --source were specified while running code. Both
are meant to focus measurement on a particular part of your source code, so
--include is ignored in favor of --source.

	Conflicting dynamic contexts (dynamic-conflict)
	The [run] dynamic_context option is set in the configuration file, but
something (probably a test runner plugin) is also calling the
Coverage.switch_context() function to change the context. Only one of
these mechanisms should be in use at a time.

Individual warnings can be disabled with the disable_warnings configuration setting. To silence “No data was
collected,” add this to your .coveragerc file:

[run]
disable_warnings = no-data-collected

or pyproject.toml:

[tool.coverage.run]
disable_warnings = ['no-data-collected']

Data file

Coverage.py collects execution data in a file called “.coverage”. If need be,
you can set a new file name with the COVERAGE_FILE environment variable. This
can include a path to another directory.

By default, each run of your program starts with an empty data set. If you need
to run your program multiple times to get complete data (for example, because
you need to supply different options), you can accumulate data across runs with
the --append flag on the run command.

Combining data files: coverage combine

Often test suites are run under different conditions, for example, with
different versions of Python, or dependencies, or on different operating
systems. In these cases, you can collect coverage data for each test run, and
then combine all the separate data files into one combined file for reporting.

The combine command reads a number of separate data files, matches the data
by source file name, and writes a combined data file with all of the data.

Coverage normally writes data to a filed named “.coverage”. The run
--parallel-mode switch (or [run] parallel=True configuration option)
tells coverage to expand the file name to include machine name, process id, and
a random number so that every data file is distinct:

.coverage.Neds-MacBook-Pro.local.88335.316857
.coverage.Geometer.8044.799674

You can also define a new data file name with the [run] data_file option.

Once you have created a number of these files, you can copy them all to a
single directory, and use the combine command to combine them into one
.coverage data file:

$ coverage combine

You can also name directories or files to be combined on the command line:

$ coverage combine data1.dat windows_data_files/

Coverage.py will collect the data from those places and combine them. The
current directory isn’t searched if you use command-line arguments. If you
also want data from the current directory, name it explicitly on the command
line.

When coverage.py combines data files, it looks for files named the same as the
data file (defaulting to “.coverage”), with a dotted suffix. Here are some
examples of data files that can be combined:

.coverage.machine1
.coverage.20120807T212300
.coverage.last_good_run.ok

An existing combined data file is ignored and re-written. If you want to use
combine to accumulate results into the .coverage data file over a number of
runs, use the --append switch on the combine command. This behavior
was the default before version 4.2.

If any of the data files can’t be read, coverage.py will print a warning
indicating the file and the problem.

The original input data files are deleted once they’ve been combined. If you
want to keep those files, use the --keep command-line option.

$ coverage combine --help
Usage: coverage combine [options] <path1> <path2> ... <pathN>

Combine data from multiple coverage files. The combined results are written to
a single file representing the union of the data. The positional arguments are
data files or directories containing data files. If no paths are provided,
data files in the default data file's directory are combined.

Options:
 -a, --append Append coverage data to .coverage, otherwise it starts
 clean each time.
 --data-file=DATAFILE Base name of the data files to operate on. Defaults to
 '.coverage'. [env: COVERAGE_FILE]
 --keep Keep original coverage files, otherwise they are
 deleted.
 -q, --quiet Don't print messages about what is happening.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

Re-mapping paths

To combine data for a source file, coverage has to find its data in each of the
data files. Different test runs may run the same source file from different
locations. For example, different operating systems will use different paths
for the same file, or perhaps each Python version is run from a different
subdirectory. Coverage needs to know that different file paths are actually
the same source file for reporting purposes.

You can tell coverage.py how different source locations relate with a
[paths] section in your configuration file (see [paths]).
It might be more convenient to use the [run] relative_files
setting to store relative file paths (see relative_files).

If data isn’t combining properly, you can see details about the inner workings
with --debug=pathmap.

Erase data: coverage erase

To erase the collected data, use the erase command:

$ coverage erase --help
Usage: coverage erase [options]

Erase previously collected coverage data.

Options:
 --data-file=DATAFILE Base name of the data files to operate on. Defaults to
 '.coverage'. [env: COVERAGE_FILE]
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

If your configuration file indicates parallel data collection, erase will
remove all of the data files.

Reporting

Coverage.py provides a few styles of reporting, with the report, html,
annotate, json, lcov, and xml commands. They share a number
of common options.

The command-line arguments are module or file names to report on, if you’d like
to report on a subset of the data collected.

The --include and --omit flags specify lists of file name patterns.
They control which files to report on, and are described in more detail in
Specifying source files.

The -i or --ignore-errors switch tells coverage.py to ignore problems
encountered trying to find source files to report on. This can be useful if
some files are missing, or if your Python execution is tricky enough that file
names are synthesized without real source files.

If you provide a --fail-under value, the total percentage covered will be
compared to that value. If it is less, the command will exit with a status
code of 2, indicating that the total coverage was less than your target. This
can be used as part of a pass/fail condition, for example in a continuous
integration server. This option isn’t available for annotate.

These options can also be set in your .coveragerc file. See
Configuration: [report].

Coverage summary: coverage report

The simplest reporting is a textual summary produced with report:

$ coverage report
Name Stmts Miss Cover

my_program.py 20 4 80%
my_module.py 15 2 86%
my_other_module.py 56 6 89%

TOTAL 91 12 87%

For each module executed, the report shows the count of executable statements,
the number of those statements missed, and the resulting coverage, expressed
as a percentage.

$ coverage report --help
Usage: coverage report [options] [modules]

Report coverage statistics on modules.

Options:
 --contexts=REGEX1,REGEX2,...
 Only display data from lines covered in the given
 contexts. Accepts Python regexes, which must be
 quoted.
 --data-file=INFILE Read coverage data for report generation from this
 file. Defaults to '.coverage'. [env: COVERAGE_FILE]
 --fail-under=MIN Exit with a status of 2 if the total coverage is less
 than MIN.
 --format=FORMAT Output format, either text (default), markdown, or
 total.
 -i, --ignore-errors Ignore errors while reading source files.
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 --precision=N Number of digits after the decimal point to display
 for reported coverage percentages.
 --sort=COLUMN Sort the report by the named column: name, stmts,
 miss, branch, brpart, or cover. Default is name.
 -m, --show-missing Show line numbers of statements in each module that
 weren't executed.
 --skip-covered Skip files with 100% coverage.
 --no-skip-covered Disable --skip-covered.
 --skip-empty Skip files with no code.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

The -m flag also shows the line numbers of missing statements:

$ coverage report -m
Name Stmts Miss Cover Missing

my_program.py 20 4 80% 33-35, 39
my_module.py 15 2 86% 8, 12
my_other_module.py 56 6 89% 17-23

TOTAL 91 12 87%

If you are using branch coverage, then branch statistics will be reported in
the Branch and BrPart (for Partial Branch) columns, the Missing column will
detail the missed branches:

$ coverage report -m
Name Stmts Miss Branch BrPart Cover Missing

my_program.py 20 4 10 2 80% 33-35, 36->38, 39
my_module.py 15 2 3 0 86% 8, 12
my_other_module.py 56 6 5 1 89% 17-23, 40->45

TOTAL 91 12 18 3 87%

You can restrict the report to only certain files by naming them on the
command line:

$ coverage report -m my_program.py my_other_module.py
Name Stmts Miss Cover Missing

my_program.py 20 4 80% 33-35, 39
my_other_module.py 56 6 89% 17-23

TOTAL 76 10 87%

The --skip-covered switch will skip any file with 100% coverage, letting
you focus on the files that still need attention. The --no-skip-covered
option can be used if needed to see all the files. The --skip-empty switch
will skip any file with no executable statements.

If you have recorded contexts, the --contexts option lets
you choose which contexts to report on. See Context reporting for
details.

The --precision option controls the number of digits displayed after the
decimal point in coverage percentages, defaulting to none.

The --sort option is the name of a column to sort the report by.

The --format option controls the style of the report. --format=text
creates plain text tables as shown above. --format=markdown creates
Markdown tables. --format=total writes out a single number, the total
coverage percentage as shown at the end of the tables, but without a percent
sign.

Other common reporting options are described above in Reporting.
These options can also be set in your .coveragerc file. See
Configuration: [report].

HTML reporting: coverage html

Coverage.py can annotate your source code to show which lines were executed
and which were not. The html command creates an HTML report similar to the
report summary, but as an HTML file. Each module name links to the source
file decorated to show the status of each line.

Here’s a sample report [https://nedbatchelder.com/files/sample_coverage_html/index.html].

Lines are highlighted: green for executed, red for missing, and gray for
excluded. If you’ve used branch coverage, partial branches are yellow. The
colored counts at the top of the file are buttons to turn on and off the
highlighting.

A number of keyboard shortcuts are available for navigating the report.
Click the keyboard icon in the upper right to see the complete list.

$ coverage html --help
Usage: coverage html [options] [modules]

Create an HTML report of the coverage of the files. Each file gets its own
page, with the source decorated to show executed, excluded, and missed lines.

Options:
 --contexts=REGEX1,REGEX2,...
 Only display data from lines covered in the given
 contexts. Accepts Python regexes, which must be
 quoted.
 -d DIR, --directory=DIR
 Write the output files to DIR.
 --data-file=INFILE Read coverage data for report generation from this
 file. Defaults to '.coverage'. [env: COVERAGE_FILE]
 --fail-under=MIN Exit with a status of 2 if the total coverage is less
 than MIN.
 -i, --ignore-errors Ignore errors while reading source files.
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 --precision=N Number of digits after the decimal point to display
 for reported coverage percentages.
 -q, --quiet Don't print messages about what is happening.
 --show-contexts Show contexts for covered lines.
 --skip-covered Skip files with 100% coverage.
 --no-skip-covered Disable --skip-covered.
 --skip-empty Skip files with no code.
 --title=TITLE A text string to use as the title on the HTML.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

The title of the report can be set with the title setting in the
[html] section of the configuration file, or the --title switch on
the command line.

If you prefer a different style for your HTML report, you can provide your
own CSS file to apply, by specifying a CSS file in the [html] section of
the configuration file. See [html] extra_css for details.

The -d argument specifies an output directory, defaulting to “htmlcov”:

$ coverage html -d coverage_html

Other common reporting options are described above in Reporting.

Generating the HTML report can be time-consuming. Stored with the HTML report
is a data file that is used to speed up reporting the next time. If you
generate a new report into the same directory, coverage.py will skip
generating unchanged pages, making the process faster.

The --skip-covered switch will skip any file with 100% coverage, letting
you focus on the files that still need attention. The --skip-empty switch
will skip any file with no executable statements.

The --precision option controls the number of digits displayed after the
decimal point in coverage percentages, defaulting to none.

If you have recorded contexts, the --contexts option lets
you choose which contexts to report on, and the --show-contexts option will
annotate lines with the contexts that ran them. See Context reporting
for details.

These options can also be set in your .coveragerc file. See
Configuration: [html].

XML reporting: coverage xml

The xml command writes coverage data to a “coverage.xml” file in a format
compatible with Cobertura [http://cobertura.github.io/cobertura/].

$ coverage xml --help
Usage: coverage xml [options] [modules]

Generate an XML report of coverage results.

Options:
 --data-file=INFILE Read coverage data for report generation from this
 file. Defaults to '.coverage'. [env: COVERAGE_FILE]
 --fail-under=MIN Exit with a status of 2 if the total coverage is less
 than MIN.
 -i, --ignore-errors Ignore errors while reading source files.
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 -o OUTFILE Write the XML report to this file. Defaults to
 'coverage.xml'
 -q, --quiet Don't print messages about what is happening.
 --skip-empty Skip files with no code.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

You can specify the name of the output file with the -o switch.

Other common reporting options are described above in Reporting.

To include complete file paths in the output file, rather than just
the file name, use [include] vs [source] in your “.coveragerc” file.

For example, use this:

[run]
include =
 foo/*
 bar/*

which will result in

<class filename="bar/hello.py">
<class filename="bar/baz/hello.py">
<class filename="foo/hello.py">

in place of this:

[run]
source =
 foo
 bar

which may result in

<class filename="hello.py">
<class filename="baz/hello.py">

These options can also be set in your .coveragerc file. See
Configuration: [xml].

JSON reporting: coverage json

The json command writes coverage data to a “coverage.json” file.

$ coverage json --help
Usage: coverage json [options] [modules]

Generate a JSON report of coverage results.

Options:
 --contexts=REGEX1,REGEX2,...
 Only display data from lines covered in the given
 contexts. Accepts Python regexes, which must be
 quoted.
 --data-file=INFILE Read coverage data for report generation from this
 file. Defaults to '.coverage'. [env: COVERAGE_FILE]
 --fail-under=MIN Exit with a status of 2 if the total coverage is less
 than MIN.
 -i, --ignore-errors Ignore errors while reading source files.
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 -o OUTFILE Write the JSON report to this file. Defaults to
 'coverage.json'
 --pretty-print Format the JSON for human readers.
 -q, --quiet Don't print messages about what is happening.
 --show-contexts Show contexts for covered lines.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

You can specify the name of the output file with the -o switch. The JSON
can be nicely formatted by specifying the --pretty-print switch.

Other common reporting options are described above in Reporting.
These options can also be set in your .coveragerc file. See
Configuration: [json].

LCOV reporting: coverage lcov

The lcov command writes coverage data to a “coverage.lcov” file.

$ coverage lcov --help
Usage: coverage lcov [options] [modules]

Generate an LCOV report of coverage results.

Options:
 --data-file=INFILE Read coverage data for report generation from this
 file. Defaults to '.coverage'. [env: COVERAGE_FILE]
 --fail-under=MIN Exit with a status of 2 if the total coverage is less
 than MIN.
 -i, --ignore-errors Ignore errors while reading source files.
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 -o OUTFILE Write the LCOV report to this file. Defaults to
 'coverage.lcov'
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 -q, --quiet Don't print messages about what is happening.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

Common reporting options are described above in Reporting.
Also see Configuration: [lcov].

New in version 6.3.

Text annotation: coverage annotate

Note

The annotate command has been obsoleted by more modern reporting tools,
including the html command. annotate will be removed in a future
version.

The annotate command produces a text annotation of your source code. With
a -d argument specifying an output directory, each Python file becomes a
text file in that directory. Without -d, the files are written into the
same directories as the original Python files.

Coverage status for each line of source is indicated with a character prefix:

> executed
! missing (not executed)
- excluded

For example:

 # A simple function, never called with x==1

> def h(x):
 """Silly function."""
- if 0: # pragma: no cover
- pass
> if x == 1:
! a = 1
> else:
> a = 2

$ coverage annotate --help
Usage: coverage annotate [options] [modules]

Make annotated copies of the given files, marking statements that are executed
with > and statements that are missed with !.

Options:
 -d DIR, --directory=DIR
 Write the output files to DIR.
 --data-file=INFILE Read coverage data for report generation from this
 file. Defaults to '.coverage'. [env: COVERAGE_FILE]
 -i, --ignore-errors Ignore errors while reading source files.
 --include=PAT1,PAT2,...
 Include only files whose paths match one of these
 patterns. Accepts shell-style wildcards, which must be
 quoted.
 --omit=PAT1,PAT2,... Omit files whose paths match one of these patterns.
 Accepts shell-style wildcards, which must be quoted.
 --debug=OPTS Debug options, separated by commas. [env:
 COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are
 tried. [env: COVERAGE_RCFILE]

Other common reporting options are described above in Reporting.

Diagnostics: coverage debug

The debug command shows internal information to help diagnose problems.
If you are reporting a bug about coverage.py, including the output of this
command can often help:

$ coverage debug sys > please_attach_to_bug_report.txt

A few types of information are available:

	config: show coverage’s configuration

	sys: show system configuration

	data: show a summary of the collected coverage data

	premain: show the call stack invoking coverage

	pybehave: show internal flags describing Python behavior

$ coverage debug --help
Usage: coverage debug <topic>

Display information about the internals of coverage.py, for diagnosing
problems. Topics are: 'data' to show a summary of the collected data; 'sys' to
show installation information; 'config' to show the configuration; 'premain'
to show what is calling coverage; 'pybehave' to show internal flags describing
Python behavior.

Options:
 --debug=OPTS Debug options, separated by commas. [env: COVERAGE_DEBUG]
 -h, --help Get help on this command.
 --rcfile=RCFILE Specify configuration file. By default '.coveragerc',
 'setup.cfg', 'tox.ini', and 'pyproject.toml' are tried.
 [env: COVERAGE_RCFILE]

--debug

The --debug option is also available on all commands. It instructs
coverage.py to log internal details of its operation, to help with diagnosing
problems. It takes a comma-separated list of options, each indicating a facet
of operation to log:

	callers: annotate each debug message with a stack trace of the callers
to that point.

	config: before starting, dump all the configuration
values.

	dataio: log when reading or writing any data file.

	dataop: log when data is added to the CoverageData object.

	lock: log operations acquiring locks in the data layer.

	multiproc: log the start and stop of multiprocessing processes.

	pathmap: log the remapping of paths that happens during coverage
combine. See [paths].

	pid: annotate all warnings and debug output with the process and thread
ids.

	plugin: print information about plugin operations.

	process: show process creation information, and changes in the current
directory. This also writes a time stamp and command arguments into the data
file.

	pybehave: show the values of internal flags [https://github.com/nedbat/coveragepy/blob/master/coverage/env.py] describing the
behavior of the current version of Python.

	self: annotate each debug message with the object printing the message.

	sql: log the SQL statements used for recording data.

	sqldata: when used with debug=sql, also log the full data being used
in SQL statements.

	sys: before starting, dump all the system and environment information,
as with coverage debug sys.

	trace: print every decision about whether to trace a file or not. For
files not being traced, the reason is also given.

Debug options can also be set with the COVERAGE_DEBUG environment variable,
a comma-separated list of these options, or in the [run] debug
section of the .coveragerc file.

The debug output goes to stderr, unless the [run] debug_file
setting or the COVERAGE_DEBUG_FILE environment variable names a different
file, which will be appended to. This can be useful because many test runners
capture output, which could hide important details. COVERAGE_DEBUG_FILE
accepts the special names stdout and stderr to write to those
destinations.

Configuration reference

Coverage.py options can be specified in a configuration file. This makes it
easier to re-run coverage.py with consistent settings, and also allows for
specification of options that are otherwise only available in the
API.

Configuration files also make it easier to get coverage testing of spawned
sub-processes. See Measuring sub-processes for more details.

The default name for configuration files is .coveragerc, in the same
directory coverage.py is being run in. Most of the settings in the
configuration file are tied to your source code and how it should be measured,
so it should be stored with your source, and checked into source control,
rather than put in your home directory.

A different location for the configuration file can be specified with the
--rcfile=FILE command line option or with the COVERAGE_RCFILE
environment variable.

Coverage.py will read settings from other usual configuration files if no other
configuration file is used. It will automatically read from “setup.cfg” or
“tox.ini” if they exist. In this case, the section names have “coverage:”
prefixed, so the [run] options described below will be found in the
[coverage:run] section of the file.

Coverage.py will read from “pyproject.toml” if TOML support is available,
either because you are running on Python 3.11 or later, or because you
installed with the toml extra (pip install coverage[toml]).
Configuration must be within the [tool.coverage] section, for example,
[tool.coverage.run]. Environment variable expansion in values is
available, but only within quoted strings, even for non-string values.

Syntax

A coverage.py configuration file is in classic .ini file format: sections are
introduced by a [section] header, and contain name = value entries.
Lines beginning with # or ; are ignored as comments.

Strings don’t need quotes. Multi-valued strings can be created by indenting
values on multiple lines.

Boolean values can be specified as on, off, true, false, 1,
or 0 and are case-insensitive.

Environment variables can be substituted in by using dollar signs: $WORD
or ${WORD} will be replaced with the value of WORD in the environment.
A dollar sign can be inserted with $$. Special forms can be used to
control what happens if the variable isn’t defined in the environment:

	If you want to raise an error if an environment variable is undefined, use a
question mark suffix: ${WORD?}.

	If you want to provide a default for missing variables, use a dash with a
default value: ${WORD-default value}.

	Otherwise, missing environment variables will result in empty strings with no
error.

Many sections and settings correspond roughly to commands and options in
the command-line interface.

Here’s a sample configuration file:

.coveragerc to control coverage.py
[run]
branch = True

[report]
Regexes for lines to exclude from consideration
exclude_also =
 # Don't complain about missing debug-only code:
 def __repr__
 if self\.debug

 # Don't complain if tests don't hit defensive assertion code:
 raise AssertionError
 raise NotImplementedError

 # Don't complain if non-runnable code isn't run:
 if 0:
 if __name__ == .__main__.:

 # Don't complain about abstract methods, they aren't run:
 @(abc\.)?abstractmethod

ignore_errors = True

[html]
directory = coverage_html_report

[run]

These settings are generally used when running product code, though some apply
to more than one command.

[run] branch

(boolean, default False) Whether to measure branch coverage in
addition to statement coverage.

[run] command_line

(string) The command-line to run your program. This will be used if you run
coverage run with no further arguments. Coverage.py options cannot be
specified here, other than -m to indicate the module to run.

New in version 5.0.

[run] concurrency

(multi-string, default “thread”) The concurrency libraries in use by the
product code. If your program uses multiprocessing [https://docs.python.org/3/library/multiprocessing.html], gevent [http://www.gevent.org/], greenlet [https://greenlet.readthedocs.io/],
or eventlet [http://eventlet.net/], you must name that library in this option, or coverage.py will
produce very wrong results.

See Measuring sub-processes for details of multi-process measurement.

Before version 4.2, this option only accepted a single string.

New in version 4.0.

[run] context

(string) The static context to record for this coverage run. See
Measurement contexts for more information

New in version 5.0.

[run] cover_pylib

(boolean, default False) Whether to measure the Python standard library.

[run] data_file

(string, default “.coverage”) The name of the data file to use for storing or
reporting coverage. This value can include a path to another directory.

[run] disable_warnings

(multi-string) A list of warnings to disable. Warnings that can be disabled
include a short string at the end, the name of the warning. See
Warnings for specific warnings.

[run] debug

(multi-string) A list of debug options. See the run –debug option for details.

[run] debug_file

(string) A file name to write debug output to. See the run –debug
option for details.

[run] dynamic_context

(string) The name of a strategy for setting the dynamic context during
execution. See Dynamic contexts for details.

[run] include

(multi-string) A list of file name patterns, the files to include in
measurement or reporting. Ignored if source is set. See Specifying source files for
details.

[run] omit

(multi-string) A list of file name patterns, the files to leave out of
measurement or reporting. See Specifying source files for details.

[run] parallel

(boolean, default False) Append the machine name, process id and random number
to the data file name to simplify collecting data from many processes. See
Combining data files: coverage combine for more information.

[run] plugins

(multi-string) A list of plugin package names. See Plug-ins for more
information.

[run] relative_files

(boolean, default False) store relative file paths in the data file. This
makes it easier to measure code in one (or multiple) environments, and then
report in another. See Combining data files: coverage combine for details.

Note that setting source has to be done in the configuration file rather
than the command line for this option to work, since the reporting commands
need to know the source origin.

New in version 5.0.

[run] sigterm

(boolean, default False) if true, register a SIGTERM signal handler to capture
data when the process ends due to a SIGTERM signal. This includes
Process.terminate [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process.terminate], and other
ways to terminate a process. This can help when collecting data in usual
situations, but can also introduce problems (see issue 1310 [https://github.com/nedbat/coveragepy/issues/1310]).

Only on Linux and Mac.

New in version 6.4: (in 6.3 this was always enabled)

[run] source

(multi-string) A list of packages or directories, the source to measure during
execution. If set, include is ignored. See Specifying source files for details.

[run] source_pkgs

(multi-string) A list of packages, the source to measure during execution.
Operates the same as source, but only names packages, for resolving
ambiguities between packages and directories.

New in version 5.3.

[run] timid

(boolean, default False) Use a simpler but slower trace method. This uses
PyTracer instead of CTracer, and is only needed in very unusual circumstances.
Try this if you get seemingly impossible results.

[paths]

The entries in this section are lists of file paths that should be considered
equivalent when combining data from different machines:

[paths]
source =
 src/
 /jenkins/build/*/src
 c:\myproj\src

The names of the entries (“source” in this example) are ignored, you may choose
any name that you like. The value is a list of strings. When combining data
with the combine command, two file paths will be combined if they start
with paths from the same list.

The first value must be an actual file path on the machine where the reporting
will happen, so that source code can be found. The other values can be file
patterns to match against the paths of collected data, or they can be absolute
or relative file paths on the current machine.

In this example, data collected for “/jenkins/build/1234/src/module.py” will be
combined with data for “c:\myproj\src\module.py”, and will be reported
against the source file found at “src/module.py”.

If you specify more than one list of paths, they will be considered in order.
A file path will only be remapped if the result exists. If a path matches a
list, but the result doesn’t exist, the next list will be tried. The first
list that has an existing result will be used.

Remapping will also be done during reporting, but only within the single data
file being reported. Combining multiple files requires the combine
command.

The --debug=pathmap option can be used to log details of the re-mapping of
paths. See the –debug option.

See Re-mapping paths and File patterns for more information.

[report]

Settings common to many kinds of reporting.

[report] exclude_also

(multi-string) A list of regular expressions. This setting is similar to
[report] exclude_lines: it specifies patterns for lines to exclude
from reporting. This setting is preferred, because it will preserve the
default exclude patterns instead of overwriting them.

New in version 7.2.0.

[report] exclude_lines

(multi-string) A list of regular expressions. Any line of your source code
containing a match for one of these regexes is excluded from being reported as
missing. More details are in Excluding code from coverage.py. If you use this option, you
are replacing all the exclude regexes, so you’ll need to also supply the
“pragma: no cover” regex if you still want to use it. The
[report] exclude_also setting can be used to specify patterns
without overwriting the default set.

You can exclude lines introducing blocks, and the entire block is excluded. If
you exclude a def line or decorator line, the entire function is excluded.

Be careful when writing this setting: the values are regular expressions that
only have to match a portion of the line. For example, if you write ...,
you’ll exclude any line with three or more of any character. If you write
pass, you’ll also exclude the line my_pass="foo", and so on.

[report] fail_under

(float) A target coverage percentage. If the total coverage measurement is
under this value, then exit with a status code of 2. If you specify a
non-integral value, you must also set [report] precision properly to make
use of the decimal places. A setting of 100 will fail any value under 100,
regardless of the number of decimal places of precision.

[report] ignore_errors

(boolean, default False) Ignore source code that can’t be found, emitting a
warning instead of an exception.

[report] include

(multi-string) A list of file name patterns, the files to include in reporting.
See Specifying source files for details.

[report] include_namespace_packages

(boolean, default False) When searching for completely un-executed files,
include directories without __init__.py files. These are implicit
namespace packages [https://peps.python.org/pep-0420/], and are usually skipped.

New in version 7.0.

[report] omit

(multi-string) A list of file name patterns, the files to leave out of
reporting. See Specifying source files for details.

[report] partial_branches

(multi-string) A list of regular expressions. Any line of code that matches
one of these regexes is excused from being reported as a partial branch. More
details are in Branch coverage measurement. If you use this option, you are replacing all
the partial branch regexes so you’ll need to also supply the “pragma: no
branch” regex if you still want to use it.

[report] precision

(integer) The number of digits after the decimal point to display for reported
coverage percentages. The default is 0, displaying for example “87%”. A value
of 2 will display percentages like “87.32%”. This setting also affects the
interpretation of the fail_under setting.

[report] show_missing

(boolean, default False) When running a summary report, show missing lines.
See Coverage summary: coverage report for more information.

[report] skip_covered

(boolean, default False) Don’t report files that are 100% covered. This helps
you focus on files that need attention.

[report] skip_empty

(boolean, default False) Don’t report files that have no executable code (such
as __init__.py files).

[report] sort

(string, default “Name”) Sort the text report by the named column. Allowed
values are “Name”, “Stmts”, “Miss”, “Branch”, “BrPart”, or “Cover”. Prefix
with - for descending sort (for example, “-cover”).

[html]

Settings particular to HTML reporting. The settings in the [report]
section also apply to HTML output, where appropriate.

[html] directory

(string, default “htmlcov”) Where to write the HTML report files.

[html] extra_css

(string) The path to a file of CSS to apply to the HTML report. The file will
be copied into the HTML output directory. Don’t name it “style.css”. This CSS
is in addition to the CSS normally used, though you can overwrite as many of
the rules as you like.

[html] show_contexts

(boolean) Should the HTML report include an indication on each line of which
contexts executed the line. See Dynamic contexts for details.

[html] skip_covered

(boolean, defaulted from [report] skip_covered) Don’t include files in the
report that are 100% covered files. See Coverage summary: coverage report for more information.

New in version 5.4.

[html] skip_empty

(boolean, defaulted from [report] skip_empty) Don’t include empty files
(those that have 0 statements) in the report. See Coverage summary: coverage report for more
information.

New in version 5.4.

[html] title

(string, default “Coverage report”) The title to use for the report.
Note this is text, not HTML.

[xml]

Settings particular to XML reporting. The settings in the [report] section
also apply to XML output, where appropriate.

[xml] output

(string, default “coverage.xml”) Where to write the XML report.

[xml] package_depth

(integer, default 99) Controls which directories are identified as packages in
the report. Directories deeper than this depth are not reported as packages.
The default is that all directories are reported as packages.

[json]

Settings particular to JSON reporting. The settings in the [report]
section also apply to JSON output, where appropriate.

New in version 5.0.

[json] output

(string, default “coverage.json”) Where to write the JSON file.

[json] pretty_print

(boolean, default false) Controls if the JSON is outputted with white space
formatted for human consumption (True) or for minimum file size (False).

[json] show_contexts

(boolean, default false) Should the JSON report include an indication of which
contexts executed each line. See Dynamic contexts for details.

[lcov]

Settings particular to LCOV reporting (see LCOV reporting: coverage lcov).

New in version 6.3.

[lcov] output

(string, default “coverage.lcov”) Where to write the LCOV file.

Specifying source files

When coverage.py is running your program and measuring its execution, it needs
to know what code to measure and what code not to. Measurement imposes a speed
penalty, and the collected data must be stored in memory and then on disk.
More importantly, when reviewing your coverage reports, you don’t want to be
distracted with modules that aren’t your concern.

Coverage.py has a number of ways you can focus it in on the code you care
about.

Execution

When running your code, the coverage run command will by default measure
all code, unless it is part of the Python standard library.

You can specify source to measure with the --source command-line switch, or
the [run] source configuration value. The value is a comma- or
newline-separated list of directories or importable names (packages or
modules).

If the source option is specified, only code in those locations will be
measured. Specifying the source option also enables coverage.py to report on
un-executed files, since it can search the source tree for files that haven’t
been measured at all. Only importable files (ones at the root of the tree, or
in directories with a __init__.py file) will be considered. Files with
unusual punctuation in their names will be skipped (they are assumed to be
scratch files written by text editors). Files that do not end with .py,
.pyw, .pyo, or .pyc will also be skipped.

Note

Modules named as sources may be imported twice, once by coverage.py to find
their location, then again by your own code or test suite. Usually this
isn’t a problem, but could cause trouble if a module has side-effects at
import time.

Exceptions during the early import are suppressed and ignored.

You can further fine-tune coverage.py’s attention with the --include and
--omit switches (or [run] include and [run] omit configuration
values). --include is a list of file name patterns. If specified, only
files matching those patterns will be measured. --omit is also a list of
file name patterns, specifying files not to measure. If both include and
omit are specified, first the set of files is reduced to only those that
match the include patterns, then any files that match the omit pattern are
removed from the set.

The include and omit file name patterns follow common shell syntax,
described below in File patterns. Patterns that start with a wildcard
character are used as-is, other patterns are interpreted relative to the
current directory:

[run]
omit =
 # omit anything in a .local directory anywhere
 /.local/
 # omit everything in /usr
 /usr/*
 # omit this single file
 utils/tirefire.py

The source, include, and omit values all work together to determine
the source that will be measured.

If both source and include are set, the include value is ignored
and a warning is issued.

Reporting

Once your program is measured, you can specify the source files you want
reported. Usually you want to see all the code that was measured, but if you
are measuring a large project, you may want to get reports for just certain
parts.

The report commands (report, html, json, lcov, annotate,
and xml)
all take optional modules arguments, and --include and --omit
switches. The modules arguments specify particular modules to report on.
The include and omit values are lists of file name patterns, just as
with the run command.

Remember that the reporting commands can only report on the data that has been
collected, so the data you’re looking for may not be in the data available for
reporting.

Note that these are ways of specifying files to measure. You can also exclude
individual source lines. See Excluding code from coverage.py for details.

File patterns

File path patterns are used for include and omit, and for combining path
remapping. They follow common shell syntax:

	* matches any number of file name characters, not including the directory
separator.

	? matches a single file name character.

	** matches any number of nested directory names, including none.

	Both / and \ will match either a slash or a backslash, to make
cross-platform matching easier.

Excluding code from coverage.py

You may have code in your project that you know won’t be executed, and you want
to tell coverage.py to ignore it. For example, you may have debugging-only
code that won’t be executed during your unit tests. You can tell coverage.py to
exclude this code during reporting so that it doesn’t clutter your reports with
noise about code that you don’t need to hear about.

Coverage.py will look for comments marking clauses for exclusion. In this
code, the “if debug” clause is excluded from reporting:

a = my_function1()
if debug: # pragma: no cover
 msg = "blah blah"
 log_message(msg, a)
b = my_function2()

Any line with a comment of “pragma: no cover” is excluded. If that line
introduces a clause, for example, an if clause, or a function or class
definition, then the entire clause is also excluded. Here the __repr__
function is not reported as missing:

class MyObject(object):
 def __init__(self):
 blah1()
 blah2()

 def __repr__(self): # pragma: no cover
 return "<MyObject>"

Excluded code is executed as usual, and its execution is recorded in the
coverage data as usual. When producing reports though, coverage.py excludes it
from the list of missing code.

Branch coverage

When measuring branch coverage, a conditional will not be
counted as a branch if one of its choices is excluded:

def only_one_choice(x):
 if x:
 blah1()
 blah2()
 else: # pragma: no cover
 # x is always true.
 blah3()

Because the else clause is excluded, the if only has one possible next
line, so it isn’t considered a branch at all.

Advanced exclusion

Coverage.py identifies exclusions by matching lines against a list of regular
expressions. Using configuration files or the coverage
API, you can add to that list. This is useful if you have
often-used constructs to exclude that can be matched with a regex. You can
exclude them all at once without littering your code with exclusion pragmas.

If the matched line introduces a block, the entire block is excluded from
reporting. Matching a def line or decorator line will exclude an entire
function.

For example, you might decide that __repr__ functions are usually only used in
debugging code, and are uninteresting to test themselves. You could exclude
all of them by adding a regex to the exclusion list:

[report]
exclude_also =
 def __repr__

For example, here’s a list of exclusions I’ve used:

[report]
exclude_also =
 def __repr__
 if self.debug:
 if settings.DEBUG
 raise AssertionError
 raise NotImplementedError
 if 0:
 if __name__ == .__main__.:
 if TYPE_CHECKING:
 class .*\bProtocol\):
 @(abc\.)?abstractmethod

The [report] exclude_also option adds regexes to the built-in
default list so that you can add your own exclusions. The older
[report] exclude_lines option completely overwrites the list of
regexes.

The regexes only have to match part of a line. Be careful not to over-match. A
value of ... will match any line with more than three characters in it.

A similar pragma, “no branch”, can be used to tailor branch coverage
measurement. See Branch coverage measurement for details.

Excluding source files

See Specifying source files for ways to limit what files coverage.py measures or reports
on.

Branch coverage measurement

In addition to the usual statement coverage, coverage.py also supports branch
coverage measurement. Where a line in your program could jump to more than one
next line, coverage.py tracks which of those destinations are actually visited,
and flags lines that haven’t visited all of their possible destinations.

For example:

1def my_partial_fn(x):
2 if x:
3 y = 10
4 return y
5
6my_partial_fn(1)

In this code, line 2 is an if statement which can go next to either line 3
or line 4. Statement coverage would show all lines of the function as executed.
But the if was never evaluated as false, so line 2 never jumps to line 4.

Branch coverage will flag this code as not fully covered because of the missing
jump from line 2 to line 4. This is known as a partial branch.

How to measure branch coverage

To measure branch coverage, run coverage.py with the --branch flag:

coverage run --branch myprog.py

When you report on the results with coverage report or coverage html,
the percentage of branch possibilities taken will be included in the percentage
covered total for each file. The coverage percentage for a file is the actual
executions divided by the execution opportunities. Each line in the file is an
execution opportunity, as is each branch destination.

The HTML report gives information about which lines had missing branches. Lines
that were missing some branches are shown in yellow, with an annotation at the
far right showing branch destination line numbers that were not exercised.

The XML and JSON reports produced by coverage xml and coverage json
also include branch information, including separate statement and branch
coverage percentages.

How it works

When measuring branches, coverage.py collects pairs of line numbers, a source
and destination for each transition from one line to another. Static analysis
of the source provides a list of possible transitions. Comparing the measured
to the possible indicates missing branches.

The idea of tracking how lines follow each other was from Titus Brown [http://ivory.idyll.org/blog].
Thanks, Titus!

Excluding code

If you have excluded code, a conditional will not be counted
as a branch if one of its choices is excluded:

1def only_one_choice(x):
2 if x:
3 blah1()
4 blah2()
5 else: # pragma: no cover
6 # x is always true.
7 blah3()

Because the else clause is excluded, the if only has one possible next
line, so it isn’t considered a branch at all.

Structurally partial branches

Sometimes branching constructs are used in unusual ways that don’t actually
branch. For example:

while True:
 if cond:
 break
 do_something()

Here the while loop will never exit normally, so it doesn’t take both of its
“possible” branches. For some of these constructs, such as “while True:” and
“if 0:”, coverage.py understands what is going on. In these cases, the line
will not be marked as a partial branch.

But there are many ways in your own code to write intentionally partial
branches, and you don’t want coverage.py pestering you about them. You can
tell coverage.py that you don’t want them flagged by marking them with a
pragma:

i = 0
while i < 999999999: # pragma: no branch
 if eventually():
 break

Here the while loop will never complete because the break will always be taken
at some point. Coverage.py can’t work that out on its own, but the “no branch”
pragma indicates that the branch is known to be partial, and the line is not
flagged.

Measuring sub-processes

Complex test suites may spawn sub-processes to run tests, either to run them in
parallel, or because sub-process behavior is an important part of the system
under test. Measuring coverage in those sub-processes can be tricky because you
have to modify the code spawning the process to invoke coverage.py.

There’s an easier way to do it: coverage.py includes a function,
coverage.process_startup() designed to be invoked when Python starts. It
examines the COVERAGE_PROCESS_START environment variable, and if it is set,
begins coverage measurement. The environment variable’s value will be used as
the name of the configuration file to use.

Note

The subprocess only sees options in the configuration file. Options set on
the command line will not be used in the subprocesses.

Note

If you have subprocesses created with multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing], the --concurrency=multiprocessing
command-line option should take care of everything for you. See
Execution: coverage run for details.

When using this technique, be sure to set the parallel option to true so that
multiple coverage.py runs will each write their data to a distinct file.

Configuring Python for sub-process measurement

Measuring coverage in sub-processes is a little tricky. When you spawn a
sub-process, you are invoking Python to run your program. Usually, to get
coverage measurement, you have to use coverage.py to run your program. Your
sub-process won’t be using coverage.py, so we have to convince Python to use
coverage.py even when not explicitly invoked.

To do that, we’ll configure Python to run a little coverage.py code when it
starts. That code will look for an environment variable that tells it to start
coverage measurement at the start of the process.

To arrange all this, you have to do two things: set a value for the
COVERAGE_PROCESS_START environment variable, and then configure Python to
invoke coverage.process_startup() when Python processes start.

How you set COVERAGE_PROCESS_START depends on the details of how you create
sub-processes. As long as the environment variable is visible in your
sub-process, it will work.

You can configure your Python installation to invoke the process_startup
function in two ways:

	Create or append to sitecustomize.py to add these lines:

import coverage
coverage.process_startup()

	Create a .pth file in your Python installation containing:

import coverage; coverage.process_startup()

The sitecustomize.py technique is cleaner, but may involve modifying an
existing sitecustomize.py, since there can be only one. If there is no
sitecustomize.py already, you can create it in any directory on the Python
path.

The .pth technique seems like a hack, but works, and is documented behavior.
On the plus side, you can create the file with any name you like so you don’t
have to coordinate with other .pth files. On the minus side, you have to
create the file in a system-defined directory, so you may need privileges to
write it.

Note that if you use one of these techniques, you must undo them if you
uninstall coverage.py, since you will be trying to import it during Python
start-up. Be sure to remove the change when you uninstall coverage.py, or use
a more defensive approach to importing it.

Process termination

To successfully write a coverage data file, the Python sub-process under
analysis must shut down cleanly and have a chance for coverage.py to run its
termination code. It will do that when the process ends naturally, or when a
SIGTERM signal is received.

Coverage.py uses atexit [https://docs.python.org/3/library/atexit.html#module-atexit] to handle usual process ends,
and a signal [https://docs.python.org/3/library/signal.html#module-signal] handler to catch SIGTERM signals.

Other ways of ending a process, like SIGKILL or os._exit [https://docs.python.org/3/library/os.html#os._exit], will prevent coverage.py from writing its data file,
leaving you with incomplete or non-existent coverage data.

Measurement contexts

New in version 5.0.

Coverage.py measures whether code was run, but it can also record the context
in which it was run. This can provide more information to help you understand
the behavior of your tests.

There are two kinds of context: static and dynamic. Static contexts are fixed
for an entire run, and are set explicitly with an option. Dynamic contexts
change over the course of a single run.

Static contexts

A static context is set by an option when you run coverage.py. The value is
fixed for the duration of a run. They can be any text you like, for example,
“python3” or “with_numpy”. The context is recorded with the data.

When you combine multiple data files together, they can
have differing contexts. All of the information is retained, so that the
different contexts are correctly recorded in the combined file.

A static context is specified with the --context=CONTEXT option to
the coverage run command, or the [run] context setting in
the configuration file.

Dynamic contexts

Dynamic contexts are found during execution. They are most commonly used to
answer the question “what test ran this line?,” but have been generalized to
allow any kind of context tracking. As execution proceeds, the dynamic context
changes to record the context of execution. Separate data is recorded for each
context, so that it can be analyzed later.

There are three ways to enable dynamic contexts:

	you can set the [run] dynamic_context option in your .coveragerc file, or

	you can enable a dynamic context switcher
plugin, or

	another tool (such as a test runner) can call the
Coverage.switch_context() method to set the context explicitly.
The pytest plugin pytest-cov [https://pypi.org/project/pytest-cov/] has a --cov-context option that uses this
to set the dynamic context for each test.

The [run] dynamic_context setting has only one option now. Set it to
test_function to start a new dynamic context for every test function:

[run]
dynamic_context = test_function

Each test function you run will be considered a separate dynamic context, and
coverage data will be segregated for each. A test function is any function
whose name starts with “test”.

If you have both a static context and a dynamic context, they are joined with a
pipe symbol to be recorded as a single string.

Initially, when your program starts running, the dynamic context is an empty
string. Any code measured before a dynamic context is set will be recorded in
this empty context. For example, if you are recording test names as contexts,
then the code run by the test runner before (and between) tests will be in the
empty context.

Dynamic contexts can be explicitly disabled by setting dynamic_context to
none.

Context reporting

The coverage report and coverage html commands both accept
--contexts option, a comma-separated list of regular expressions. The
report will be limited to the contexts that match one of those patterns.

The coverage html command also has --show-contexts. If set, the HTML
report will include an annotation on each covered line indicating the number of
contexts that executed the line. Clicking the annotation displays a list of
the contexts.

Raw data

For more advanced reporting or analysis, the .coverage data file is a SQLite
database. See Coverage.py database schema for details.

Coverage.py API

There are a few different ways to use coverage.py programmatically.

The API to coverage.py is in a module called coverage. Most of the
interface is in the coverage.Coverage class. Methods on the Coverage
object correspond roughly to operations available in the command line
interface. For example, a simple use would be:

import coverage

cov = coverage.Coverage()
cov.start()

.. call your code ..

cov.stop()
cov.save()

cov.html_report()

Any of the methods can raise specialized exceptions described in
Coverage exceptions.

Coverage.py supports plugins that can change its behavior, to collect
information from non-Python files, or to perform complex configuration. See
Plug-in classes for details.

If you want to access the data that coverage.py has collected, the
coverage.CoverageData class provides an API to read coverage.py data
files.

Note

Only the documented portions of the API are supported. Other names you may
find in modules or objects can change their behavior at any time. Please
limit yourself to documented methods to avoid problems.

For more intensive data use, you might want to access the coverage.py database
file directly. The schema is subject to change, so this is for advanced uses
only. Coverage.py database schema explains more.

	The Coverage class

	Coverage exceptions

	coverage module

	Plug-in classes

	The CoverageData class

	Coverage.py database schema

The Coverage class

	
class coverage.Coverage(data_file=MISSING, data_suffix=None, cover_pylib=None, auto_data=False, timid=None, branch=None, config_file=True, source=None, source_pkgs=None, omit=None, include=None, debug=None, concurrency=None, check_preimported=False, context=None, messages=False)

	Programmatic access to coverage.py.

To use:

from coverage import Coverage

cov = Coverage()
cov.start()
#.. call your code ..
cov.stop()
cov.html_report(directory="covhtml")

Note: in keeping with Python custom, names starting with underscore are
not part of the public API. They might stop working at any point. Please
limit yourself to documented methods to avoid problems.

Methods can raise any of the exceptions described in Coverage exceptions.

	Parameters:

	
	data_file (Optional[Union[FilePath, DefaultValue]]) –

	data_suffix (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]]) –

	cover_pylib (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	auto_data (bool [https://docs.python.org/3/library/functions.html#bool]) –

	timid (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	branch (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) –

	config_file (Union[FilePath, bool [https://docs.python.org/3/library/functions.html#bool]]) –

	source (Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	source_pkgs (Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	omit (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	debug (Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	concurrency (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	check_preimported (bool [https://docs.python.org/3/library/functions.html#bool]) –

	context (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	messages (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
__init__(data_file=MISSING, data_suffix=None, cover_pylib=None, auto_data=False, timid=None, branch=None, config_file=True, source=None, source_pkgs=None, omit=None, include=None, debug=None, concurrency=None, check_preimported=False, context=None, messages=False)

	Many of these arguments duplicate and override values that can be
provided in a configuration file. Parameters that are missing here
will use values from the config file.

data_file is the base name of the data file to use. The config value
defaults to “.coverage”. None can be provided to prevent writing a data
file. data_suffix is appended (with a dot) to data_file to create
the final file name. If data_suffix is simply True, then a suffix is
created with the machine and process identity included.

cover_pylib is a boolean determining whether Python code installed
with the Python interpreter is measured. This includes the Python
standard library and any packages installed with the interpreter.

If auto_data is true, then any existing data file will be read when
coverage measurement starts, and data will be saved automatically when
measurement stops.

If timid is true, then a slower and simpler trace function will be
used. This is important for some environments where manipulation of
tracing functions breaks the faster trace function.

If branch is true, then branch coverage will be measured in addition
to the usual statement coverage.

config_file determines what configuration file to read:

	If it is “.coveragerc”, it is interpreted as if it were True,
for backward compatibility.

	If it is a string, it is the name of the file to read. If the
file can’t be read, it is an error.

	If it is True, then a few standard files names are tried
(“.coveragerc”, “setup.cfg”, “tox.ini”). It is not an error for
these files to not be found.

	If it is False, then no configuration file is read.

source is a list of file paths or package names. Only code located
in the trees indicated by the file paths or package names will be
measured.

source_pkgs is a list of package names. It works the same as
source, but can be used to name packages where the name can also be
interpreted as a file path.

include and omit are lists of file name patterns. Files that match
include will be measured, files that match omit will not. Each
will also accept a single string argument.

debug is a list of strings indicating what debugging information is
desired.

concurrency is a string indicating the concurrency library being used
in the measured code. Without this, coverage.py will get incorrect
results if these libraries are in use. Valid strings are “greenlet”,
“eventlet”, “gevent”, “multiprocessing”, or “thread” (the default).
This can also be a list of these strings.

If check_preimported is true, then when coverage is started, the
already-imported files will be checked to see if they should be
measured by coverage. Importing measured files before coverage is
started can mean that code is missed.

context is a string to use as the static context label for collected data.

If messages is true, some messages will be printed to stdout
indicating what is happening.

New in version 4.0: The concurrency parameter.

New in version 4.2: The concurrency parameter can now be a list of strings.

New in version 5.0: The check_preimported and context parameters.

New in version 5.3: The source_pkgs parameter.

New in version 6.0: The messages parameter.

	Parameters:

	
	data_file (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike], DefaultValue]]) –

	data_suffix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]]) –

	cover_pylib (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	auto_data (bool [https://docs.python.org/3/library/functions.html#bool]) –

	timid (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	branch (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	config_file (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike], bool [https://docs.python.org/3/library/functions.html#bool]]) –

	source (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	source_pkgs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	debug (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	concurrency (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	check_preimported (bool [https://docs.python.org/3/library/functions.html#bool]) –

	context (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	messages (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type:

	None

	
analysis(morf)

	Like analysis2 but doesn’t return excluded line numbers.

	Parameters:

	morf (Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
analysis2(morf)

	Analyze a module.

morf is a module or a file name. It will be analyzed to determine
its coverage statistics. The return value is a 5-tuple:

	The file name for the module.

	A list of line numbers of executable statements.

	A list of line numbers of excluded statements.

	A list of line numbers of statements not run (missing from
execution).

	A readable formatted string of the missing line numbers.

The analysis uses the source file itself and the current measured
coverage data.

	Parameters:

	morf (Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
annotate(morfs=None, directory=None, ignore_errors=None, omit=None, include=None, contexts=None)

	Annotate a list of modules.

Note

This method has been obsoleted by more modern reporting tools,
including the html_report() method. It will be removed in a
future version.

Each module in morfs is annotated. The source is written to a new
file, named with a “,cover” suffix, with each line prefixed with a
marker to indicate the coverage of the line. Covered lines have “>”,
excluded lines have “-”, and missing lines have “!”.

See report() for other arguments.

	Parameters:

	
	morfs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	directory (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ignore_errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type:

	None

	
clear_exclude(which='exclude')

	Clear the exclude list.

	Parameters:

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	None

	
combine(data_paths=None, strict=False, keep=False)

	Combine together a number of similarly-named coverage data files.

All coverage data files whose name starts with data_file (from the
coverage() constructor) will be read, and combined together into the
current measurements.

data_paths is a list of files or directories from which data should
be combined. If no list is passed, then the data files from the
directory indicated by the current data file (probably the current
directory) will be combined.

If strict is true, then it is an error to attempt to combine when
there are no data files to combine.

If keep is true, then original input data files won’t be deleted.

New in version 4.0: The data_paths parameter.

New in version 4.3: The strict parameter.

	Parameters:

	
	data_paths (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) –

	keep (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type:

	None

	
classmethod current()

	Get the latest started Coverage instance, if any.

Returns: a Coverage instance, or None.

New in version 5.0.

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Coverage]

	
erase()

	Erase previously collected coverage data.

This removes the in-memory data collected in this session as well as
discarding the data file.

	Return type:

	None

	
exclude(regex, which='exclude')

	Exclude source lines from execution consideration.

A number of lists of regular expressions are maintained. Each list
selects lines that are treated differently during reporting.

which determines which list is modified. The “exclude” list selects
lines that are not considered executable at all. The “partial” list
indicates lines with branches that are not taken.

regex is a regular expression. The regex is added to the specified
list. If any of the regexes in the list is found in a line, the line
is marked for special treatment during reporting.

	Parameters:

	
	regex (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	None

	
get_data()

	Get the collected data.

Also warn about various problems collecting data.

Returns a coverage.CoverageData, the collected coverage data.

New in version 4.0.

	Return type:

	CoverageData

	
get_exclude_list(which='exclude')

	Return a list of excluded regex strings.

which indicates which list is desired. See exclude() for the
lists that are available, and their meaning.

	Parameters:

	which (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_option(option_name)

	Get an option from the configuration.

option_name is a colon-separated string indicating the section and
option name. For example, the branch option in the [run]
section of the config file would be indicated with “run:branch”.

Returns the value of the option. The type depends on the option
selected.

As a special case, an option_name of "paths" will return an
dictionary with the entire [paths] section value.

New in version 4.0.

	Parameters:

	option_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	
html_report(morfs=None, directory=None, ignore_errors=None, omit=None, include=None, extra_css=None, title=None, skip_covered=None, show_contexts=None, contexts=None, skip_empty=None, precision=None)

	Generate an HTML report.

The HTML is written to directory. The file “index.html” is the
overview starting point, with links to more detailed pages for
individual modules.

extra_css is a path to a file of other CSS to apply on the page.
It will be copied into the HTML directory.

title is a text string (not HTML) to use as the title of the HTML
report.

See report() for other arguments.

Returns a float, the total percentage covered.

Note

The HTML report files are generated incrementally based on the
source files and coverage results. If you modify the report files,
the changes will not be considered. You should be careful about
changing the files in the report folder.

	Parameters:

	
	morfs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	directory (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ignore_errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	extra_css (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	title (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	skip_covered (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	show_contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	skip_empty (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	precision (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
json_report(morfs=None, outfile=None, ignore_errors=None, omit=None, include=None, contexts=None, pretty_print=None, show_contexts=None)

	Generate a JSON report of coverage results.

Each module in morfs is included in the report. outfile is the
path to write the file to, “-” will write to stdout.

pretty_print is a boolean, whether to pretty-print the JSON output or not.

See report() for other arguments.

Returns a float, the total percentage covered.

New in version 5.0.

	Parameters:

	
	morfs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	outfile (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ignore_errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	pretty_print (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	show_contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
lcov_report(morfs=None, outfile=None, ignore_errors=None, omit=None, include=None, contexts=None)

	Generate an LCOV report of coverage results.

Each module in morfs is included in the report. outfile is the
path to write the file to, “-” will write to stdout.

See report() for other arguments.

New in version 6.3.

	Parameters:

	
	morfs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	outfile (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ignore_errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
load()

	Load previously-collected coverage data from the data file.

	Return type:

	None

	
report(morfs=None, show_missing=None, ignore_errors=None, file=None, omit=None, include=None, skip_covered=None, contexts=None, skip_empty=None, precision=None, sort=None, output_format=None)

	Write a textual summary report to file.

Each module in morfs is listed, with counts of statements, executed
statements, missing statements, and a list of lines missed.

If show_missing is true, then details of which lines or branches are
missing will be included in the report. If ignore_errors is true,
then a failure while reporting a single file will not stop the entire
report.

file is a file-like object, suitable for writing.

output_format determines the format, either “text” (the default),
“markdown”, or “total”.

include is a list of file name patterns. Files that match will be
included in the report. Files matching omit will not be included in
the report.

If skip_covered is true, don’t report on files with 100% coverage.

If skip_empty is true, don’t report on empty files (those that have
no statements).

contexts is a list of regular expression strings. Only data from
dynamic contexts that match one of those
expressions (using re.search [https://docs.python.org/3/library/re.html#re.search]) will be
included in the report.

precision is the number of digits to display after the decimal
point for percentages.

All of the arguments default to the settings read from the
configuration file.

Returns a float, the total percentage covered.

New in version 4.0: The skip_covered parameter.

New in version 5.0: The contexts and skip_empty parameters.

New in version 5.2: The precision parameter.

New in version 7.0: The format parameter.

	Parameters:

	
	morfs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	show_missing (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	ignore_errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	file (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][IO [https://docs.python.org/3/library/typing.html#typing.IO][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	skip_covered (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	skip_empty (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	precision (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) –

	sort (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	output_format (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
save()

	Save the collected coverage data to the data file.

	Return type:

	None

	
set_option(option_name, value)

	Set an option in the configuration.

option_name is a colon-separated string indicating the section and
option name. For example, the branch option in the [run]
section of the config file would be indicated with "run:branch".

value is the new value for the option. This should be an
appropriate Python value. For example, use True for booleans, not the
string "True".

As an example, calling:

cov.set_option("run:branch", True)

has the same effect as this configuration file:

[run]
branch = True

As a special case, an option_name of "paths" will replace the
entire [paths] section. The value should be a dictionary.

New in version 4.0.

	Parameters:

	
	option_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]], None, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]]]]) –

	Return type:

	None

	
start()

	Start measuring code coverage.

Coverage measurement only occurs in functions called after
start() is invoked. Statements in the same scope as
start() won’t be measured.

Once you invoke start(), you must also call stop()
eventually, or your process might not shut down cleanly.

	Return type:

	None

	
stop()

	Stop measuring code coverage.

	Return type:

	None

	
switch_context(new_context)

	Switch to a new dynamic context.

new_context is a string to use as the dynamic context label for collected data. If a static
context is in use, the static and dynamic context
labels will be joined together with a pipe character.

Coverage collection must be started already.

New in version 5.0.

	Parameters:

	new_context (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	None

	
xml_report(morfs=None, outfile=None, ignore_errors=None, omit=None, include=None, contexts=None, skip_empty=None)

	Generate an XML report of coverage results.

The report is compatible with Cobertura reports.

Each module in morfs is included in the report. outfile is the
path to write the file to, “-” will write to stdout.

See report() for other arguments.

Returns a float, the total percentage covered.

	Parameters:

	
	morfs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][module, str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	outfile (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ignore_errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	omit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	include (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) –

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	skip_empty (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

Coverage exceptions

	
class coverage.exceptions.CoverageException

	The base class of all exceptions raised by Coverage.py.

Exceptions coverage.py can raise.

	
exception coverage.exceptions.ConfigError

	A problem with a config file, or a value in one.

	
exception coverage.exceptions.CoverageWarning

	A warning from Coverage.py.

	
exception coverage.exceptions.DataError

	An error in using a data file.

	
exception coverage.exceptions.NoCode

	We couldn’t find any code at all.

	
exception coverage.exceptions.NoDataError

	We didn’t have data to work with.

	
exception coverage.exceptions.NoSource

	We couldn’t find the source for a module.

	
exception coverage.exceptions.NotPython

	A source file turned out not to be parsable Python.

	
exception coverage.exceptions.PluginError

	A plugin misbehaved.

coverage module

The most important thing in the coverage module is the
coverage.Coverage class, described in The Coverage class, but there
are a few other things also.

	
coverage.version_info

	

A tuple of five elements, similar to sys.version_info [https://docs.python.org/3/library/sys.html#sys.version_info]: major, minor, micro, releaselevel, and
serial. All values except releaselevel are integers; the release level is
'alpha', 'beta', 'candidate', or 'final'. Unlike
sys.version_info [https://docs.python.org/3/library/sys.html#sys.version_info], the elements are not
available by name.

	
coverage.__version__

	

A string with the version of coverage.py, for example, "5.0b2".

	
class coverage.CoverageException

	The base class of all exceptions raised by Coverage.py.

Starting coverage.py automatically

This function is used to start coverage measurement automatically when Python
starts. See Measuring sub-processes for details.

	
coverage.process_startup()

	Call this at Python start-up to perhaps measure coverage.

If the environment variable COVERAGE_PROCESS_START is defined, coverage
measurement is started. The value of the variable is the config file
to use.

There are two ways to configure your Python installation to invoke this
function when Python starts:

	Create or append to sitecustomize.py to add these lines:

import coverage
coverage.process_startup()

	Create a .pth file in your Python installation containing:

import coverage; coverage.process_startup()

Returns the Coverage instance that was started, or None if it was
not started by this call.

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Coverage]

Plug-in classes

New in version 4.0.

Plug-in interfaces for coverage.py.

Coverage.py supports a few different kinds of plug-ins that change its
behavior:

	File tracers implement tracing of non-Python file types.

	Configurers add custom configuration, using Python code to change the
configuration.

	Dynamic context switchers decide when the dynamic context has changed, for
example, to record what test function produced the coverage.

To write a coverage.py plug-in, create a module with a subclass of
CoveragePlugin. You will override methods in your class to
participate in various aspects of coverage.py’s processing.
Different types of plug-ins have to override different methods.

Any plug-in can optionally implement sys_info()
to provide debugging information about their operation.

Your module must also contain a coverage_init function that registers an
instance of your plug-in class:

import coverage

class MyPlugin(coverage.CoveragePlugin):
 ...

def coverage_init(reg, options):
 reg.add_file_tracer(MyPlugin())

You use the reg parameter passed to your coverage_init function to
register your plug-in object. The registration method you call depends on
what kind of plug-in it is.

If your plug-in takes options, the options parameter is a dictionary of your
plug-in’s options from the coverage.py configuration file. Use them however
you want to configure your object before registering it.

Coverage.py will store its own information on your plug-in object, using
attributes whose names start with _coverage_. Don’t be startled.

Warning

Plug-ins are imported by coverage.py before it begins measuring code.
If you write a plugin in your own project, it might import your product
code before coverage.py can start measuring. This can result in your
own code being reported as missing.

One solution is to put your plugins in your project tree, but not in
your importable Python package.

File Tracers

File tracers implement measurement support for non-Python files. File tracers
implement the file_tracer() method to claim
files and the file_reporter() method to report
on those files.

In your coverage_init function, use the add_file_tracer method to
register your file tracer.

Configurers

New in version 4.5.

Configurers modify the configuration of coverage.py during start-up.
Configurers implement the configure() method to
change the configuration.

In your coverage_init function, use the add_configurer method to
register your configurer.

Dynamic Context Switchers

New in version 5.0.

Dynamic context switcher plugins implement the
dynamic_context() method to dynamically compute
the context label for each measured frame.

Computed context labels are useful when you want to group measured data without
modifying the source code.

For example, you could write a plugin that checks frame.f_code to inspect
the currently executed method, and set the context label to a fully qualified
method name if it’s an instance method of unittest.TestCase and the method
name starts with ‘test’. Such a plugin would provide basic coverage grouping
by test and could be used with test runners that have no built-in coveragepy
support.

In your coverage_init function, use the add_dynamic_context method to
register your dynamic context switcher.

The CoveragePlugin class

	
class coverage.CoveragePlugin

	Base class for coverage.py plug-ins.

	
file_tracer(filename)

	Get a FileTracer object for a file.

Plug-in type: file tracer.

Every Python source file is offered to your plug-in to give it a chance
to take responsibility for tracing the file. If your plug-in can
handle the file, it should return a FileTracer object.
Otherwise return None.

There is no way to register your plug-in for particular files.
Instead, this method is invoked for all files as they are executed,
and the plug-in decides whether it can trace the file or not.
Be prepared for filename to refer to all kinds of files that have
nothing to do with your plug-in.

The file name will be a Python file being executed. There are two
broad categories of behavior for a plug-in, depending on the kind of
files your plug-in supports:

	Static file names: each of your original source files has been
converted into a distinct Python file. Your plug-in is invoked with
the Python file name, and it maps it back to its original source
file.

	Dynamic file names: all of your source files are executed by the same
Python file. In this case, your plug-in implements
FileTracer.dynamic_source_filename() to provide the actual
source file for each execution frame.

filename is a string, the path to the file being considered. This is
the absolute real path to the file. If you are comparing to other
paths, be sure to take this into account.

Returns a FileTracer object to use to trace filename, or
None if this plug-in cannot trace this file.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][FileTracer]

	
file_reporter(filename)

	Get the FileReporter class to use for a file.

Plug-in type: file tracer.

This will only be invoked if filename returns non-None from
file_tracer(). It’s an error to return None from this method.

Returns a FileReporter object to use to report on filename,
or the string “python” to have coverage.py treat the file as Python.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][FileReporter, str [https://docs.python.org/3/library/stdtypes.html#str]]

	
dynamic_context(frame)

	Get the dynamically computed context label for frame.

Plug-in type: dynamic context.

This method is invoked for each frame when outside of a dynamic
context, to see if a new dynamic context should be started. If it
returns a string, a new context label is set for this and deeper
frames. The dynamic context ends when this frame returns.

Returns a string to start a new dynamic context, or None if no new
context should be started.

	Parameters:

	frame (frame) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
find_executable_files(src_dir)

	Yield all of the executable files in src_dir, recursively.

Plug-in type: file tracer.

Executability is a plug-in-specific property, but generally means files
which would have been considered for coverage analysis, had they been
included automatically.

Returns or yields a sequence of strings, the paths to files that could
have been executed, including files that had been executed.

	Parameters:

	src_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
configure(config)

	Modify the configuration of coverage.py.

Plug-in type: configurer.

This method is called during coverage.py start-up, to give your plug-in
a chance to change the configuration. The config parameter is an
object with get_option() and
set_option() methods. Do not call any other
methods on the config object.

	Parameters:

	config (TConfigurable) –

	Return type:

	None

	
sys_info()

	Get a list of information useful for debugging.

Plug-in type: any.

This method will be invoked for --debug=sys. Your
plug-in can return any information it wants to be displayed.

Returns a list of pairs: [(name, value), …].

	Return type:

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

The FileTracer class

	
class coverage.FileTracer

	Support needed for files during the execution phase.

File tracer plug-ins implement subclasses of FileTracer to return from
their file_tracer() method.

You may construct this object from CoveragePlugin.file_tracer() any
way you like. A natural choice would be to pass the file name given to
file_tracer.

FileTracer objects should only be created in the
CoveragePlugin.file_tracer() method.

See How coverage.py works for details of the different coverage.py phases.

	
source_filename()

	The source file name for this file.

This may be any file name you like. A key responsibility of a plug-in
is to own the mapping from Python execution back to whatever source
file name was originally the source of the code.

See CoveragePlugin.file_tracer() for details about static and
dynamic file names.

Returns the file name to credit with this execution.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
has_dynamic_source_filename()

	Does this FileTracer have dynamic source file names?

FileTracers can provide dynamically determined file names by
implementing dynamic_source_filename(). Invoking that function
is expensive. To determine whether to invoke it, coverage.py uses the
result of this function to know if it needs to bother invoking
dynamic_source_filename().

See CoveragePlugin.file_tracer() for details about static and
dynamic file names.

Returns True if dynamic_source_filename() should be called to get
dynamic source file names.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
dynamic_source_filename(filename, frame)

	Get a dynamically computed source file name.

Some plug-ins need to compute the source file name dynamically for each
frame.

This function will not be invoked if
has_dynamic_source_filename() returns False.

Returns the source file name for this frame, or None if this frame
shouldn’t be measured.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	frame (frame) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
line_number_range(frame)

	Get the range of source line numbers for a given a call frame.

The call frame is examined, and the source line number in the original
file is returned. The return value is a pair of numbers, the starting
line number and the ending line number, both inclusive. For example,
returning (5, 7) means that lines 5, 6, and 7 should be considered
executed.

This function might decide that the frame doesn’t indicate any lines
from the source file were executed. Return (-1, -1) in this case to
tell coverage.py that no lines should be recorded for this frame.

	Parameters:

	frame (frame) –

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

The FileReporter class

	
class coverage.FileReporter(filename)

	Support needed for files during the analysis and reporting phases.

File tracer plug-ins implement a subclass of FileReporter, and return
instances from their CoveragePlugin.file_reporter() method.

There are many methods here, but only lines() is required, to provide
the set of executable lines in the file.

See How coverage.py works for details of the different coverage.py phases.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
relative_filename()

	Get the relative file name for this file.

This file path will be displayed in reports. The default
implementation will supply the actual project-relative file path. You
only need to supply this method if you have an unusual syntax for file
paths.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
source()

	Get the source for the file.

Returns a Unicode string.

The base implementation simply reads the self.filename file and
decodes it as UTF-8. Override this method if your file isn’t readable
as a text file, or if you need other encoding support.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
lines()

	Get the executable lines in this file.

Your plug-in must determine which lines in the file were possibly
executable. This method returns a set of those line numbers.

Returns a set of line numbers.

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]]

	
excluded_lines()

	Get the excluded executable lines in this file.

Your plug-in can use any method it likes to allow the user to exclude
executable lines from consideration.

Returns a set of line numbers.

The base implementation returns the empty set.

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]]

	
translate_lines(lines)

	Translate recorded lines into reported lines.

Some file formats will want to report lines slightly differently than
they are recorded. For example, Python records the last line of a
multi-line statement, but reports are nicer if they mention the first
line.

Your plug-in can optionally define this method to perform these kinds
of adjustment.

lines is a sequence of integers, the recorded line numbers.

Returns a set of integers, the adjusted line numbers.

The base implementation returns the numbers unchanged.

	Parameters:

	lines (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]]) –

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]]

	
arcs()

	Get the executable arcs in this file.

To support branch coverage, your plug-in needs to be able to indicate
possible execution paths, as a set of line number pairs. Each pair is
a (prev, next) pair indicating that execution can transition from the
prev line number to the next line number.

Returns a set of pairs of line numbers. The default implementation
returns an empty set.

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]

	
no_branch_lines()

	Get the lines excused from branch coverage in this file.

Your plug-in can use any method it likes to allow the user to exclude
lines from consideration of branch coverage.

Returns a set of line numbers.

The base implementation returns the empty set.

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][int [https://docs.python.org/3/library/functions.html#int]]

	
translate_arcs(arcs)

	Translate recorded arcs into reported arcs.

Similar to translate_lines(), but for arcs. arcs is a set of
line number pairs.

Returns a set of line number pairs.

The default implementation returns arcs unchanged.

	Parameters:

	arcs (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]) –

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]

	
exit_counts()

	Get a count of exits from that each line.

To determine which lines are branches, coverage.py looks for lines that
have more than one exit. This function creates a dict mapping each
executable line number to a count of how many exits it has.

To be honest, this feels wrong, and should be refactored. Let me know
if you attempt to implement this method in your plug-in…

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	
missing_arc_description(start, end, executed_arcs=None)

	Provide an English sentence describing a missing arc.

The start and end arguments are the line numbers of the missing
arc. Negative numbers indicate entering or exiting code objects.

The executed_arcs argument is a set of line number pairs, the arcs
that were executed in this file.

By default, this simply returns the string “Line {start} didn’t jump
to {end}”.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) –

	end (int [https://docs.python.org/3/library/functions.html#int]) –

	executed_arcs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) –

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
source_token_lines()

	Generate a series of tokenized lines, one for each line in source.

These tokens are used for syntax-colored reports.

Each line is a list of pairs, each pair is a token:

[("key", "def"), ("ws", " "), ("nam", "hello"), ("op", "("), ...]

Each pair has a token class, and the token text. The token classes
are:

	"com": a comment

	"key": a keyword

	"nam": a name, or identifier

	"num": a number

	"op": an operator

	"str": a string literal

	"ws": some white space

	"txt": some other kind of text

If you concatenate all the token texts, and then join them with
newlines, you should have your original source back.

The default implementation simply returns each line tagged as
"txt".

	Return type:

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]]

The CoverageData class

New in version 4.0.

	
class coverage.CoverageData(basename=None, suffix=None, no_disk=False, warn=None, debug=None)

	Manages collected coverage data, including file storage.

This class is the public supported API to the data that coverage.py
collects during program execution. It includes information about what code
was executed. It does not include information from the analysis phase, to
determine what lines could have been executed, or what lines were not
executed.

Note

The data file is currently a SQLite database file, with a
documented schema. The schema is subject to change
though, so be careful about querying it directly. Use this API if you
can to isolate yourself from changes.

There are a number of kinds of data that can be collected:

	lines: the line numbers of source lines that were executed.
These are always available.

	arcs: pairs of source and destination line numbers for transitions
between source lines. These are only available if branch coverage was
used.

	file tracer names: the module names of the file tracer plugins that
handled each file in the data.

Lines, arcs, and file tracer names are stored for each source file. File
names in this API are case-sensitive, even on platforms with
case-insensitive file systems.

A data file either stores lines, or arcs, but not both.

A data file is associated with the data when the CoverageData
is created, using the parameters basename, suffix, and no_disk. The
base name can be queried with base_filename(), and the actual file
name being used is available from data_filename().

To read an existing coverage.py data file, use read(). You can then
access the line, arc, or file tracer data with lines(), arcs(),
or file_tracer().

The has_arcs() method indicates whether arc data is available. You
can get a set of the files in the data with measured_files(). As
with most Python containers, you can determine if there is any data at all
by using this object as a boolean value.

The contexts for each line in a file can be read with
contexts_by_lineno().

To limit querying to certain contexts, use set_query_context() or
set_query_contexts(). These will narrow the focus of subsequent
lines(), arcs(), and contexts_by_lineno() calls. The set
of all measured context names can be retrieved with
measured_contexts().

Most data files will be created by coverage.py itself, but you can use
methods here to create data files if you like. The add_lines(),
add_arcs(), and add_file_tracers() methods add data, in ways
that are convenient for coverage.py.

To record data for contexts, use set_context() to set a context to
be used for subsequent add_lines() and add_arcs() calls.

To add a source file without any measured data, use touch_file(),
or touch_files() for a list of such files.

Write the data to its file with write().

You can clear the data in memory with erase(). Data for specific
files can be removed from the database with purge_files().

Two data collections can be combined by using update() on one
CoverageData, passing it the other.

Data in a CoverageData can be serialized and deserialized with
dumps() and loads().

The methods used during the coverage.py collection phase
(add_lines(), add_arcs(), set_context(), and
add_file_tracers()) are thread-safe. Other methods may not be.

	Parameters:

	
	basename (Optional[FilePath]) –

	suffix (Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]]) –

	no_disk (bool [https://docs.python.org/3/library/functions.html#bool]) –

	warn (Optional[TWarnFn]) –

	debug (Optional[TDebugCtl]) –

	
__init__(basename=None, suffix=None, no_disk=False, warn=None, debug=None)

	Create a CoverageData object to hold coverage-measured data.

	Parameters:

	
	basename (str [https://docs.python.org/3/library/stdtypes.html#str]) – the base name of the data file, defaulting to
“.coverage”. This can be a path to a file in another directory.

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str] or bool [https://docs.python.org/3/library/functions.html#bool]) – has the same meaning as the data_suffix
argument to coverage.Coverage.

	no_disk (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, keep all data in memory, and don’t
write any disk file.

	warn (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TWarnFn]) – a warning callback function, accepting a warning message
argument.

	debug (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TDebugCtl]) – a DebugControl object (optional)

	Return type:

	None

	
add_arcs(arc_data)

	Add measured arc data.

arc_data is a dictionary mapping file names to iterables of pairs of
ints:

{ filename: { (l1,l2), (l1,l2), ... }, ...}

	Parameters:

	arc_data (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Collection [https://docs.python.org/3/library/typing.html#typing.Collection][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]) –

	Return type:

	None

	
add_file_tracers(file_tracers)

	Add per-file plugin information.

file_tracers is { filename: plugin_name, … }

	Parameters:

	file_tracers (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	None

	
add_lines(line_data)

	Add measured line data.

line_data is a dictionary mapping file names to iterables of ints:

{ filename: { line1, line2, ... }, ...}

	Parameters:

	line_data (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Collection [https://docs.python.org/3/library/typing.html#typing.Collection][int [https://docs.python.org/3/library/functions.html#int]]]) –

	Return type:

	None

	
arcs(filename)

	Get the list of arcs executed for a file.

If the file was not measured, returns None. A file might be measured,
and have no arcs executed, in which case an empty list is returned.

If the file was executed, returns a list of 2-tuples of integers. Each
pair is a starting line number and an ending line number for a
transition from one line to another. The list is in no particular
order.

Negative numbers have special meaning. If the starting line number is
-N, it represents an entry to the code object that starts at line N.
If the ending ling number is -N, it’s an exit from the code object that
starts at line N.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]

	
base_filename()

	The base filename for storing data.

New in version 5.0.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
contexts_by_lineno(filename)

	Get the contexts for each line in a file.

	Returns:

	A dict mapping line numbers to a list of context names.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

New in version 5.0.

	
data_filename()

	Where is the data stored?

New in version 5.0.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
dumps()

	Serialize the current data to a byte string.

The format of the serialized data is not documented. It is only
suitable for use with loads() in the same version of
coverage.py.

Note that this serialization is not what gets stored in coverage data
files. This method is meant to produce bytes that can be transmitted
elsewhere and then deserialized with loads().

	Returns:

	A byte string of serialized data.

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

New in version 5.0.

	
erase(parallel=False)

	Erase the data in this object.

If parallel is true, then also deletes data files created from the
basename by parallel-mode.

	Parameters:

	parallel (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type:

	None

	
file_tracer(filename)

	Get the plugin name of the file tracer for a file.

Returns the name of the plugin that handles this file. If the file was
measured, but didn’t use a plugin, then “” is returned. If the file
was not measured, then None is returned.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
has_arcs()

	Does the database have arcs (True) or lines (False).

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
lines(filename)

	Get the list of lines executed for a source file.

If the file was not measured, returns None. A file might be measured,
and have no lines executed, in which case an empty list is returned.

If the file was executed, returns a list of integers, the line numbers
executed in the file. The list is in no particular order.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]]

	
loads(data)

	Deserialize data from dumps().

Use with a newly-created empty CoverageData object. It’s
undefined what happens if the object already has data in it.

Note that this is not for reading data from a coverage data file. It
is only for use on data you produced with dumps().

	Parameters:

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A byte string of serialized data produced by dumps().

	Return type:

	None

New in version 5.0.

	
measured_contexts()

	A set of all contexts that have been measured.

New in version 5.0.

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
measured_files()

	A set of all files that have been measured.

Note that a file may be mentioned as measured even though no lines or
arcs for that file are present in the data.

	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
purge_files(filenames)

	Purge any existing coverage data for the given filenames.

New in version 7.2.

	Parameters:

	filenames (Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	None

	
read()

	Start using an existing data file.

	Return type:

	None

	
set_context(context)

	Set the current context for future add_lines() etc.

context is a str, the name of the context to use for the next data
additions. The context persists until the next set_context().

New in version 5.0.

	Parameters:

	context (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	None

	
set_query_context(context)

	Set a context for subsequent querying.

The next lines(), arcs(), or contexts_by_lineno()
calls will be limited to only one context. context is a string which
must match a context exactly. If it does not, no exception is raised,
but queries will return no data.

New in version 5.0.

	Parameters:

	context (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	None

	
set_query_contexts(contexts)

	Set a number of contexts for subsequent querying.

The next lines(), arcs(), or contexts_by_lineno()
calls will be limited to the specified contexts. contexts is a list
of Python regular expressions. Contexts will be matched using
re.search [https://docs.python.org/3/library/re.html#re.search]. Data will be included in query
results if they are part of any of the contexts matched.

New in version 5.0.

	Parameters:

	contexts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type:

	None

	
classmethod sys_info()

	Our information for Coverage.sys_info.

Returns a list of (key, value) pairs.

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
touch_file(filename, plugin_name='')

	Ensure that filename appears in the data, empty if needed.

plugin_name is the name of the plugin responsible for this file.
It is used to associate the right filereporter, etc.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	plugin_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	None

	
touch_files(filenames, plugin_name=None)

	Ensure that filenames appear in the data, empty if needed.

plugin_name is the name of the plugin responsible for these files.
It is used to associate the right filereporter, etc.

	Parameters:

	
	filenames (Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	plugin_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	None

	
update(other_data, aliases=None)

	Update this data with data from several other CoverageData instances.

If aliases is provided, it’s a PathAliases object that is used to
re-map paths to match the local machine’s. Note: aliases is None
only when called directly from the test suite.

	Parameters:

	
	other_data (CoverageData) –

	aliases (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][PathAliases]) –

	Return type:

	None

	
write()

	Ensure the data is written to the data file.

	Return type:

	None

Coverage.py database schema

New in version 5.0.

Coverage.py stores data in a SQLite database, by default called .coverage.
For most needs, the CoverageData API will be sufficient, and should
be preferred to accessing the database directly. Only advanced uses will need
to use the database.

The schema can change without changing the major version of coverage.py, so be
careful when accessing the database directly. The coverage_schema table
has the schema number of the database. The schema described here corresponds
to:

SCHEMA_VERSION = 7

You can use SQLite tools such as the sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3] module in
the Python standard library to access the data. Some data is stored in a
packed format that will need custom functions to access. See
register_sqlite_functions().

Database schema

This is the database schema:

CREATE TABLE coverage_schema (
 -- One row, to record the version of the schema in this db.
 version integer
);

CREATE TABLE meta (
 -- Key-value pairs, to record metadata about the data
 key text,
 value text,
 unique (key)
 -- Possible keys:
 -- 'has_arcs' boolean -- Is this data recording branches?
 -- 'sys_argv' text -- The coverage command line that recorded the data.
 -- 'version' text -- The version of coverage.py that made the file.
 -- 'when' text -- Datetime when the file was created.
);

CREATE TABLE file (
 -- A row per file measured.
 id integer primary key,
 path text,
 unique (path)
);

CREATE TABLE context (
 -- A row per context measured.
 id integer primary key,
 context text,
 unique (context)
);

CREATE TABLE line_bits (
 -- If recording lines, a row per context per file executed.
 -- All of the line numbers for that file/context are in one numbits.
 file_id integer, -- foreign key to `file`.
 context_id integer, -- foreign key to `context`.
 numbits blob, -- see the numbits functions in coverage.numbits
 foreign key (file_id) references file (id),
 foreign key (context_id) references context (id),
 unique (file_id, context_id)
);

CREATE TABLE arc (
 -- If recording branches, a row per context per from/to line transition executed.
 file_id integer, -- foreign key to `file`.
 context_id integer, -- foreign key to `context`.
 fromno integer, -- line number jumped from.
 tono integer, -- line number jumped to.
 foreign key (file_id) references file (id),
 foreign key (context_id) references context (id),
 unique (file_id, context_id, fromno, tono)
);

CREATE TABLE tracer (
 -- A row per file indicating the tracer used for that file.
 file_id integer primary key,
 tracer text,
 foreign key (file_id) references file (id)
);

Numbits

Functions to manipulate packed binary representations of number sets.

To save space, coverage stores sets of line numbers in SQLite using a packed
binary representation called a numbits. A numbits is a set of positive
integers.

A numbits is stored as a blob in the database. The exact meaning of the bytes
in the blobs should be considered an implementation detail that might change in
the future. Use these functions to work with those binary blobs of data.

	
coverage.numbits.num_in_numbits(num, numbits)

	Does the integer num appear in numbits?

	Returns:

	A bool, True if num is a member of numbits.

	Parameters:

	
	num (int [https://docs.python.org/3/library/functions.html#int]) –

	numbits (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
coverage.numbits.numbits_any_intersection(numbits1, numbits2)

	Is there any number that appears in both numbits?

Determine whether two number sets have a non-empty intersection. This is
faster than computing the intersection.

	Returns:

	A bool, True if there is any number in both numbits1 and numbits2.

	Parameters:

	
	numbits1 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	numbits2 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
coverage.numbits.numbits_intersection(numbits1, numbits2)

	Compute the intersection of two numbits.

	Returns:

	A new numbits, the intersection numbits1 and numbits2.

	Parameters:

	
	numbits1 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	numbits2 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
coverage.numbits.numbits_to_nums(numbits)

	Convert a numbits into a list of numbers.

	Parameters:

	numbits (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – a binary blob, the packed number set.

	Returns:

	A list of ints.

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]

When registered as a SQLite function by register_sqlite_functions(),
this returns a string, a JSON-encoded list of ints.

	
coverage.numbits.numbits_union(numbits1, numbits2)

	Compute the union of two numbits.

	Returns:

	A new numbits, the union of numbits1 and numbits2.

	Parameters:

	
	numbits1 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	numbits2 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
coverage.numbits.nums_to_numbits(nums)

	Convert nums into a numbits.

	Parameters:

	nums (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]]) – a reusable iterable of integers, the line numbers to store.

	Returns:

	A binary blob.

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
coverage.numbits.register_sqlite_functions(connection)

	Define numbits functions in a SQLite connection.

This defines these functions for use in SQLite statements:

	numbits_union()

	numbits_intersection()

	numbits_any_intersection()

	num_in_numbits()

	numbits_to_nums()

connection is a sqlite3.Connection [https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection]
object. After creating the connection, pass it to this function to
register the numbits functions. Then you can use numbits functions in your
queries:

import sqlite3
from coverage.numbits import register_sqlite_functions

conn = sqlite3.connect("example.db")
register_sqlite_functions(conn)
c = conn.cursor()
Kind of a nonsense query:
Find all the files and contexts that executed line 47 in any file:
c.execute(
 "select file_id, context_id from line_bits where num_in_numbits(?, numbits)",
 (47,)
)

	Parameters:

	connection (Connection [https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection]) –

	Return type:

	None

How coverage.py works

For advanced use of coverage.py, or just because you are curious, it helps to
understand what’s happening behind the scenes.

Coverage.py works in three phases:

	Execution: Coverage.py runs your code, and monitors it to see what lines
were executed.

	Analysis: Coverage.py examines your code to determine what lines could
have run.

	Reporting: Coverage.py combines the results of execution and analysis to
produce a coverage number and an indication of missing execution.

The execution phase is handled by the coverage run command. The analysis
and reporting phases are handled by the reporting commands like coverage
report or coverage html.

As a short-hand, I say that coverage.py measures what lines were executed. But
it collects more information than that. It can measure what branches were
taken, and if you have contexts enabled, for each line or branch, it will also
measure what contexts they were executed in.

Let’s look at each phase in more detail.

Execution

At the heart of the execution phase is a trace function. This is a function
that the Python interpreter invokes for each line executed in a program.
Coverage.py implements a trace function that records each file and line number
as it is executed.

For more details of trace functions, see the Python docs for sys.settrace [https://docs.python.org/3/library/sys.html#sys.settrace],
or if you are really brave, How C trace functions really work [https://nedbatchelder.com/text/trace-function.html].

Executing a function for every line in your program can make execution very
slow. Coverage.py’s trace function is implemented in C to reduce that
overhead. It also takes care to not trace code that you aren’t interested in.

When measuring branch coverage, the same trace function is used, but instead of
recording line numbers, coverage.py records pairs of line numbers. Each
invocation of the trace function remembers the line number, then the next
invocation records the pair (prev, this) to indicate that execution
transitioned from the previous line to this line. Internally, these are called
arcs.

As the data is being collected, coverage.py writes the data to a file, usually
named .coverage. This is a SQLite database containing
all of the measured data.

Plugins

Of course coverage.py mostly measures execution of Python files. But it can
also be used to analyze other kinds of execution. File tracer plugins provide support for non-Python files. For example,
Django HTML templates result in Python code being executed somewhere, but as a
developer, you want that execution mapped back to your .html template file.

During execution, each new Python file encountered is provided to the plugins
to consider. A plugin can claim the file and then convert the runtime Python
execution into source-level data to be recorded.

Dynamic contexts

When using dynamic contexts, there is a current
dynamic context that changes over the course of execution. It starts as empty.
While it is empty, every time a new function is entered, a check is made to see
if the dynamic context should change. While a non-empty dynamic context is
current, the check is skipped until the function that started the context
returns.

Analysis

After your program has been executed and the line numbers recorded, coverage.py
needs to determine what lines could have been executed. Luckily, compiled
Python files (.pyc files) have a table of line numbers in them. Coverage.py
reads this table to get the set of executable lines, with a little more source
analysis to leave out things like docstrings.

The data file is read to get the set of lines that were executed. The
difference between the executable lines and the executed lines are the lines
that were not executed.

The same principle applies for branch measurement, though the process for
determining possible branches is more involved. Coverage.py uses the abstract
syntax tree of the Python source file to determine the set of possible
branches.

Reporting

Once we have the set of executed lines and missing lines, reporting is just a
matter of formatting that information in a useful way. Each reporting method
(text, HTML, JSON, annotated source, XML) has a different output format, but
the process is the same: write out the information in the particular format,
possibly including the source code itself.

Plug-ins

Coverage.py’s behavior can be extended with third-party plug-ins. A plug-in is
a separately installed Python class that you register in your .coveragerc.
Plugins can alter a number of aspects of coverage.py’s behavior, including
implementing coverage measurement for non-Python files.

Information about using plug-ins is on this page. To write a plug-in, see
Plug-in classes.

New in version 4.0.

Using plug-ins

To use a coverage.py plug-in, you install it and configure it. For this
example, let’s say there’s a Python package called something that provides
a coverage.py plug-in called something.plugin.

	Install the plug-in’s package as you would any other Python package:

$ python3 -m pip install something

	Configure coverage.py to use the plug-in. You do this by editing (or
creating) your .coveragerc file, as described in Configuration reference. The
plugins setting indicates your plug-in. It’s a list of importable
module names of plug-ins:

[run]
plugins =
 something.plugin

	If the plug-in needs its own configuration, you can add those settings in
the .coveragerc file in a section named for the plug-in:

[something.plugin]
option1 = True
option2 = abc.foo

Check the documentation for the plug-in for details on the options it takes.

	Run your tests with coverage.py as you usually would. If you get a message
like “Plugin file tracers (something.plugin) aren’t supported with
PyTracer,” then you don’t have the C extension
installed. The C extension is needed for certain plug-ins.

Available plug-ins

Some coverage.py plug-ins you might find useful:

	Django template coverage.py plug-in [https://pypi.org/project/django_coverage_plugin/]: for measuring coverage in Django
templates.

	Conditional coverage plug-in [https://github.com/wemake-services/coverage-conditional-plugin]: for measuring coverage based
on any rules you define!
Can exclude different lines of code that are only executed
on different platforms, python versions,
and with different dependencies installed.

	Mako template coverage plug-in [https://bitbucket-archive.softwareheritage.org/projects/ne/ned/coverage-mako-plugin.html]: for measuring coverage in Mako templates.
Doesn’t work yet, probably needs some changes in Mako itself.

Contributing to coverage.py

I welcome contributions to coverage.py. Over the years, dozens of people have
provided patches of various sizes to add features or fix bugs. This page
should have all the information you need to make a contribution.

One source of history or ideas are the bug reports [https://github.com/nedbat/coveragepy/issues] against coverage.py.
There you can find ideas for requested features, or the remains of rejected
ideas.

Before you begin

If you have an idea for coverage.py, run it by me before you begin writing
code. This way, I can get you going in the right direction, or point you to
previous work in the area. Things are not always as straightforward as they
seem, and having the benefit of lessons learned by those before you can save
you frustration.

Getting the code

The coverage.py code is hosted on a GitHub repository at
https://github.com/nedbat/coveragepy. To get a working environment, follow
these steps:

	Fork the repo [https://docs.github.com/en/get-started/quickstart/fork-a-repo] into your own GitHub account. The coverage.py code will
then be copied into a GitHub repository at
https://github.com/GITHUB_USER/coveragepy where GITHUB_USER is your
GitHub username.

	(Optional) Create a virtualenv to work in, and activate it. There
are a number of ways to do this. Use the method you are comfortable with.

	Clone the repository:

$ git clone https://github.com/GITHUB_USER/coveragepy
$ cd coveragepy

	Install the requirements:

$ python3 -m pip install -r requirements/dev.in

Note: You may need to upgrade pip to install the requirements.

Running the tests

The tests are written mostly as standard unittest-style tests, and are run with
pytest running under tox [https://tox.readthedocs.io/]:

% python3 -m tox
ROOT: tox-gh won't override envlist because tox is not running in GitHub Actions
.pkg: _optional_hooks> python /usr/local/virtualenvs/coverage/lib/python3.7/site-packages/pyproject_api/_backend.py True setuptools.build_meta
.pkg: get_requires_for_build_editable> python /usr/local/virtualenvs/coverage/lib/python3.7/site-packages/pyproject_api/_backend.py True setuptools.build_meta
.pkg: build_editable> python /usr/local/virtualenvs/coverage/lib/python3.7/site-packages/pyproject_api/_backend.py True setuptools.build_meta
py37: install_package> python -m pip install -U --force-reinstall --no-deps .tox/.tmp/package/87/coverage-7.2.3a0.dev1-0.editable-cp37-cp37m-macosx_10_15_x86_64.whl
py37: commands[0]> python igor.py zip_mods
py37: commands[1]> python setup.py --quiet build_ext --inplace
py37: commands[2]> python -m pip install -q -e .
py37: commands[3]> python igor.py test_with_tracer c
=== CPython 3.7.15 with C tracer (.tox/py37/bin/python) ===
bringing up nodes...
...x.................s....s....... [11%]
..s.....x...s... [22%]
.. [34%]
.. [45%]
.. [57%]
.........s..s......................... [68%]
.................................s..............................s...............s..................................s.................................... [80%]
..s... [91%]
......................................s... [100%]
1316 passed, 12 skipped, 2 xfailed in 36.42s
py37: commands[4]> python igor.py remove_extension
py37: commands[5]> python igor.py test_with_tracer py
=== CPython 3.7.15 with Python tracer (.tox/py37/bin/python) ===
bringing up nodes...
..x...........................x.................s......... [11%]
.....s.............s.s...s..............ss............................s.ss....ss.ss................... [22%]
..s................. [34%]
..s..................................... [45%]
...................s.ss...s....................s.ss................... [57%]
..................s.s... [68%]
..........................s...ssss...............s.................s...sss..................s...ss...ssss.s....... [80%]
...s [91%]
...s.................................ss.... [100%]
1281 passed, 47 skipped, 2 xfailed in 33.86s
.pkg: _exit> python /usr/local/virtualenvs/coverage/lib/python3.7/site-packages/pyproject_api/_backend.py True setuptools.build_meta
 py37: OK (82.38=setup[2.80]+cmd[0.20,0.35,7.30,37.20,0.21,34.32] seconds)
 congratulations :) (83.61 seconds)

Tox runs the complete test suite twice for each version of Python you have
installed. The first run uses the C implementation of the trace function,
the second uses the Python implementation.

To limit tox to just a few versions of Python, use the -e switch:

$ python3 -m tox -e py37,py39

On the tox command line, options after -- are passed to pytest. To run
just a few tests, you can use pytest test selectors [https://doc.pytest.org/en/stable/usage.html#specifying-which-tests-to-run]:

$ python3 -m tox -- tests/test_misc.py
$ python3 -m tox -- tests/test_misc.py::HasherTest
$ python3 -m tox -- tests/test_misc.py::HasherTest::test_string_hashing

These commands run the tests in one file, one class, and just one test,
respectively. The pytest -k option selects tests based on a word in their
name, which can be very convenient for ad-hoc test selection. Of course you
can combine tox and pytest options:

$ python3 -m tox -q -e py37 -- -n 0 -vv -k hash
=== CPython 3.7.15 with C tracer (.tox/py37/bin/python) ===
======================================= test session starts ==
platform darwin -- Python 3.7.15, pytest-7.2.2, pluggy-1.0.0 -- /Users/nedbat/coverage/.tox/py37/bin/python
cachedir: .tox/py37/.pytest_cache
rootdir: /Users/nedbat/coverage, configfile: setup.cfg
plugins: flaky-3.7.0, hypothesis-6.70.0, xdist-3.2.1
collected 1330 items / 1320 deselected / 10 selected
run-last-failure: no previously failed tests, not deselecting items.

tests/test_data.py::CoverageDataTest::test_add_to_hash_with_lines PASSED [10%]
tests/test_data.py::CoverageDataTest::test_add_to_hash_with_arcs PASSED [20%]
tests/test_data.py::CoverageDataTest::test_add_to_lines_hash_with_missing_file PASSED [30%]
tests/test_data.py::CoverageDataTest::test_add_to_arcs_hash_with_missing_file PASSED [40%]
tests/test_execfile.py::RunPycFileTest::test_running_hashed_pyc PASSED [50%]
tests/test_misc.py::HasherTest::test_string_hashing PASSED [60%]
tests/test_misc.py::HasherTest::test_bytes_hashing PASSED [70%]
tests/test_misc.py::HasherTest::test_unicode_hashing PASSED [80%]
tests/test_misc.py::HasherTest::test_dict_hashing PASSED [90%]
tests/test_misc.py::HasherTest::test_dict_collision PASSED [100%]

=============================== 10 passed, 1320 deselected in 1.88s ================================
Skipping tests with Python tracer: Only one tracer: no Python tracer for CPython
 py37: OK (12.22=setup[2.19]+cmd[0.20,0.36,6.57,2.51,0.20,0.19] seconds)
 congratulations :) (13.10 seconds)

You can also affect the test runs with environment variables. Define any of
these as 1 to use them:

	COVERAGE_NO_PYTRACER=1 disables the Python tracer if you only want to
run the CTracer tests.

	COVERAGE_NO_CTRACER=1 disables the C tracer if you only want to run the
PyTracer tests.

	COVERAGE_ONE_TRACER=1 will use only one tracer for each Python version.
This will use the C tracer if it is available, or the Python tracer if not.

	COVERAGE_AST_DUMP=1 will dump the AST tree as it is being used during
code parsing.

There are other environment variables that affect tests. I use set_env.py [https://nedbatchelder.com/blog/201907/set_envpy.html]
as a simple terminal interface to see and set them.

Of course, run all the tests on every version of Python you have, before
submitting a change.

Lint, etc

I try to keep the coverage.py source as clean as possible. I use pylint to
alert me to possible problems:

$ make lint

The source is pylint-clean, even if it’s because there are pragmas quieting
some warnings. Please try to keep it that way, but don’t let pylint warnings
keep you from sending patches. I can clean them up.

Lines should be kept to a 100-character maximum length. I recommend an
editorconfig.org [http://editorconfig.org] plugin for your editor of choice, which will also help with
indentation, line endings and so on.

Other style questions are best answered by looking at the existing code.
Formatting of docstrings, comments, long lines, and so on, should match the
code that already exists.

Many people love black [https://pypi.org/project/black/], but I would prefer not to run it on coverage.py.

Continuous integration

When you make a pull request, GitHub actions [https://github.com/nedbat/coveragepy/actions] will run all of the tests and
quality checks on your changes. If any fail, either fix them or ask for help.

Dependencies

Coverage.py has no direct runtime dependencies, and I would like to keep it
that way.

It has many development dependencies. These are specified generically in the
requirements/*.in files. The .in files should have no versions specified
in them. The specific versions to use are pinned in requirements/*.pip
files. These are created by running make upgrade.

It’s important to use Python 3.7 to run make upgrade so that the pinned
versions will work on all of the Python versions currently supported by
coverage.py.

If for some reason we need to constrain a version of a dependency, the
constraint should be specified in the requirements/pins.pip file, with a
detailed reason for the pin.

Coverage testing coverage.py

Coverage.py can measure itself, but it’s complicated. The process has been
packaged up to make it easier:

$ make metacov metahtml

Then look at htmlcov/index.html. Note that due to the recursive nature of
coverage.py measuring itself, there are some parts of the code that will never
appear as covered, even though they are executed.

Contributing

When you are ready to contribute a change, any way you can get it to me is
probably fine. A pull request on GitHub is great, but a simple diff or
patch works too.

All contributions are expected to include tests for new functionality and
fixes. If you need help writing tests, please ask.

Things that cause trouble

Coverage.py works well, and I want it to properly measure any Python program,
but there are some situations it can’t cope with. This page details some known
problems, with possible courses of action, and links to coverage.py bug reports
with more information.

I would love to hear from you if you have information about
any of these problems, even just to explain to me why you want them to start
working properly.

If your problem isn’t discussed here, you can of course search the coverage.py
bug tracker [https://github.com/nedbat/coveragepy/issues] directly to see if there is some mention of it.

Things that don’t work

There are a few modules or functions that prevent coverage.py from working
properly:

	execv [https://docs.python.org/3/library/os.html#os.execl], or one of its variants. These end the current program and replace
it with a new one. This doesn’t save the collected coverage data, so your
program that calls execv will not be fully measured. A patch for coverage.py
is in issue 43 [https://github.com/nedbat/coveragepy/issues/43].

	thread [https://docs.python.org/3/library/_thread.html], in the Python standard library, is the low-level threading
interface. Threads created with this module will not be traced. Use the
higher-level threading [https://docs.python.org/3/library/threading.html] module instead.

	sys.settrace [https://docs.python.org/3/library/sys.html#sys.settrace] is the Python feature that coverage.py uses to see what’s
happening in your program. If another part of your program is using
sys.settrace, then it will conflict with coverage.py, and it won’t be
measured properly.

	sys.setprofile [https://docs.python.org/3/library/sys.html#sys.setprofile] calls your code, but while running your code, does not fire
trace events. This means that coverage.py can’t see what’s happening in that
code.

Still having trouble?

If your problem isn’t mentioned here, and isn’t already reported in the
coverage.py bug tracker [https://github.com/nedbat/coveragepy/issues], please get in touch with me,
we’ll figure out a solution.

FAQ and other help

Frequently asked questions

Q: Why are some of my files not measured?

Coverage.py has a number of mechanisms for deciding which files to measure and
which to skip. If your files aren’t being measured, use the --debug=trace
option, also settable as [run] debug=trace in the
settings file, or as COVERAGE_DEBUG=trace in an
environment variable.

This will write a line for each file considered, indicating whether it is
traced or not, and if not, why not. Be careful though: the output might be
swallowed by your test runner. If so, a COVERAGE_DEBUG_FILE=/tmp/cov.out
environment variable can direct the output to a file instead to ensure you see
everything.

Q: Why do unexecutable lines show up as executed?

Usually this is because you’ve updated your code and run coverage.py on it
again without erasing the old data. Coverage.py records line numbers executed,
so the old data may have recorded a line number which has since moved, causing
coverage.py to claim a line has been executed which cannot be.

If old data is persisting, you can use an explicit coverage erase command
to clean out the old data.

Q: Why are my function definitions marked as run when I haven’t tested them?

The def and class lines in your Python file are executed when the file
is imported. Those are the lines that define your functions and classes. They
run even if you never call the functions. It’s the body of the functions that
will be marked as not executed if you don’t test them, not the def lines.

This can mean that your code has a moderate coverage total even if no tests
have been written or run. This might seem surprising, but it is accurate: the
def lines have actually been run.

Q: Why do the bodies of functions show as executed, but the def lines do not?

If this happens, it’s because coverage.py has started after the functions are
defined. The definition lines are executed without coverage measurement, then
coverage.py is started, then the function is called. This means the body is
measured, but the definition of the function itself is not.

The same thing can happen with the bodies of classes.

To fix this, start coverage.py earlier. If you use the command line to run your program with coverage.py, then your entire program will be
monitored. If you are using the API, you need to call
coverage.start() before importing the modules that define your functions.

Q: My decorator lines are marked as covered, but the “def” line is not. Why?

Different versions of Python report execution on different lines. Coverage.py
adapts its behavior to the version of Python being used. In Python 3.7 and
earlier, a decorated function definition only reported the decorator as
executed. In Python 3.8 and later, both the decorator and the “def” are
reported. If you collect execution data on Python 3.7, and then run coverage
reports on Python 3.8, there will be a discrepancy.

Q: Can I find out which tests ran which lines?

Yes! Coverage.py has a feature called Dynamic contexts which can collect
this information. Add this to your .coveragerc file:

[run]
dynamic_context = test_function

and then use the --contexts option when generating an HTML report.

Q: How is the total percentage calculated?

Coverage.py counts the total number of possible executions. This is the number
of executable statements minus the number of excluded statements. It then
counts the number of those possibilities that were actually executed. The
total percentage is the actual executions divided by the possible executions.

As an example, a coverage report with 1514 statements and 901 missed
statements would calculate a total percentage of (1514-901)/1514, or 40.49%.

Branch coverage extends the calculation to include the total
number of possible branch exits, and the number of those taken. In this case
the specific numbers shown in coverage reports don’t calculate out to the
percentage shown, because the number of missing branch exits isn’t reported
explicitly. A branch line that wasn’t executed at all is counted once as a
missing statement in the report, instead of as two missing branches. Reports
show the number of partial branches, which is the lines that were executed but
did not execute all of their exits.

Q: Coverage.py is much slower than I remember, what’s going on?

Make sure you are using the C trace function. Coverage.py provides two
implementations of the trace function. The C implementation runs much faster.
To see what you are running, use coverage debug sys. The output contains
details of the environment, including a line that says either
CTracer: available or CTracer: unavailable. If it says unavailable,
then you are using the slow Python implementation.

Try re-installing coverage.py to see what happened and if you get the CTracer
as you should.

Q: Isn’t coverage testing the best thing ever?

It’s good, but it isn’t perfect [https://nedbatchelder.com/blog/200710/flaws_in_coverage_measurement.html].

Q: Where can I get more help with coverage.py?

You can discuss coverage.py or get help using it on the Python discussion
forums [https://discuss.python.org/]. If you ping me (@nedbat), there’s a higher chance I’ll see the
post.

Bug reports are gladly accepted at the GitHub issue tracker [https://github.com/nedbat/coveragepy/issues].

I can be reached [https://nedbatchelder.com/site/aboutned.html] in a number of ways, I’m happy to answer questions about
using coverage.py.

History

Coverage.py was originally written by Gareth Rees [http://garethrees.org/].
Since 2004, Ned Batchelder [https://nedbatchelder.com] has extended and maintained it with the help of
many others [https://github.com/nedbat/coveragepy/blob/master/CONTRIBUTORS.txt]. The change history has all the details.

Change history for coverage.py

These changes are listed in decreasing version number order. Note this can be
different from a strict chronological order when there are two branches in
development at the same time, such as 4.5.x and 5.0.

Version 7.2.6 — 2023-05-23

	Fix: the lcov command could raise an IndexError exception if a file is
translated to Python but then executed under its own name. Jinja2 does this
when rendering templates. Fixes issue 1553 [https://github.com/nedbat/coveragepy/issues/1553].

	Python 3.12 beta 1 now inlines comprehensions. Previously they were compiled
as invisible functions and coverage.py would warn you if they weren’t
completely executed. This no longer happens under Python 3.12.

	Fix: the coverage debug sys command includes some environment variables
in its output. This could have included sensitive data. Those values are
now hidden with asterisks, closing issue 1628 [https://github.com/nedbat/coveragepy/issues/1628].

Version 7.2.5 — 2023-04-30

	Fix: html_report() could fail with an AttributeError on isatty if run
in an unusual environment where sys.stdout had been replaced. This is now
fixed.

Version 7.2.4 — 2023-04-28

PyCon 2023 sprint fixes!

	Fix: with relative_files = true, specifying a specific file to include or
omit wouldn’t work correctly (issue 1604 [https://github.com/nedbat/coveragepy/issues/1604]). This is now fixed, with
testing help by Marc Gibbons [https://github.com/nedbat/coveragepy/pull/1608].

	Fix: the XML report would have an incorrect <source> element when using
relative files and the source option ended with a slash (issue 1541 [https://github.com/nedbat/coveragepy/issues/1541]).
This is now fixed, thanks to Kevin Brown-Silva [https://github.com/nedbat/coveragepy/pull/1608].

	When the HTML report location is printed to the terminal, it’s now a
terminal-compatible URL, so that you can click the location to open the HTML
file in your browser. Finishes issue 1523 [https://github.com/nedbat/coveragepy/issues/1523] thanks to Ricardo Newbery [https://github.com/nedbat/coveragepy/pull/1613].

	Docs: a new Migrating page with details about how to
migrate between major versions of coverage.py. It currently covers the
wildcard changes in 7.x. Thanks, Brian Grohe [https://github.com/nedbat/coveragepy/pull/1610].

Version 7.2.3 — 2023-04-06

	Fix: the [run] sigterm setting was meant to capture data if a
process was terminated with a SIGTERM signal, but it didn’t always. This was
fixed thanks to Lewis Gaul [https://github.com/nedbat/coveragepy/pull/1600], closing issue 1599 [https://github.com/nedbat/coveragepy/issues/1599].

	Performance: HTML reports with context information are now much more compact.
File sizes are typically as small as one-third the previous size, but can be
dramatically smaller. This closes issue 1584 [https://github.com/nedbat/coveragepy/issues/1584] thanks to Oleh Krehel [https://github.com/nedbat/coveragepy/pull/1587].

	Development dependencies no longer use hashed pins, closing issue 1592 [https://github.com/nedbat/coveragepy/issues/1592].

Version 7.2.2 — 2023-03-16

	Fix: if a virtualenv was created inside a source directory, and a sourced
package was installed inside the virtualenv, then all of the third-party
packages inside the virtualenv would be measured. This was incorrect, but
has now been fixed: only the specified packages will be measured, thanks to
Manuel Jacob [https://github.com/nedbat/coveragepy/pull/1560].

	Fix: the coverage lcov command could create a .lcov file with incorrect
LF (lines found) and LH (lines hit) totals. This is now fixed, thanks to
Ian Moore [https://github.com/nedbat/coveragepy/pull/1583].

	Fix: the coverage xml command on Windows could create a .xml file with
duplicate <package> elements. This is now fixed, thanks to Benjamin
Parzella [https://github.com/nedbat/coveragepy/pull/1574], closing issue 1573 [https://github.com/nedbat/coveragepy/issues/1573].

Version 7.2.1 — 2023-02-26

	Fix: the PyPI page had broken links to documentation pages, but no longer
does, closing issue 1566 [https://github.com/nedbat/coveragepy/issues/1566].

	Fix: public members of the coverage module are now properly indicated so that
mypy will find them, fixing issue 1564 [https://github.com/nedbat/coveragepy/issues/1564].

Version 7.2.0 — 2023-02-22

	Added a new setting [report] exclude_also to let you add more exclusions
without overwriting the defaults. Thanks, Alpha Chen [https://github.com/nedbat/coveragepy/pull/1557],
closing issue 1391 [https://github.com/nedbat/coveragepy/issues/1391].

	Added a CoverageData.purge_files() method to remove recorded data for
a particular file. Contributed by Stephan Deibel [https://github.com/nedbat/coveragepy/pull/1547].

	Fix: when reporting commands fail, they will no longer congratulate
themselves with messages like “Wrote XML report to file.xml” before spewing a
traceback about their failure.

	Fix: arguments in the public API that name file paths now accept pathlib.Path
objects. This includes the data_file and config_file arguments to
the Coverage constructor and the basename argument to CoverageData.
Closes issue 1552 [https://github.com/nedbat/coveragepy/issues/1552].

	Fix: In some embedded environments, an IndexError could occur on stop() when
the originating thread exits before completion. This is now fixed, thanks to
Russell Keith-Magee [https://github.com/nedbat/coveragepy/pull/1543], closing issue 1542 [https://github.com/nedbat/coveragepy/issues/1542].

	Added a py.typed file to announce our type-hintedness. Thanks,
KotlinIsland [https://github.com/nedbat/coveragepy/pull/1550].

Version 7.1.0 — 2023-01-24

	Added: the debug output file can now be specified with [run] debug_file
in the configuration file. Closes issue 1319 [https://github.com/nedbat/coveragepy/issues/1319].

	Performance: fixed a slowdown with dynamic contexts that’s been around since
6.4.3. The fix closes issue 1538 [https://github.com/nedbat/coveragepy/issues/1538]. Thankfully this doesn’t break the
Cython change [https://github.com/nedbat/coveragepy/pull/1347] that fixed issue 972 [https://github.com/nedbat/coveragepy/issues/972]. Thanks to Mathieu Kniewallner for
the deep investigative work and comprehensive issue report.

	Typing: all product and test code has type annotations.

Version 7.0.5 — 2023-01-10

	Fix: On Python 3.7, a file with type annotations but no from __future__
import annotations would be missing statements in the coverage report. This
is now fixed, closing issue 1524 [https://github.com/nedbat/coveragepy/issues/1524].

Version 7.0.4 — 2023-01-07

	Performance: an internal cache of file names was accidentally disabled,
resulting in sometimes drastic reductions in performance. This is now fixed,
closing issue 1527 [https://github.com/nedbat/coveragepy/issues/1527]. Thanks to Ivan Ciuvalschii for the reproducible test
case.

Version 7.0.3 — 2023-01-03

	Fix: when using pytest-cov or pytest-xdist, or perhaps both, the combining
step could fail with assert row is not None using 7.0.2. This was due to
a race condition that has always been possible and is still possible. In
7.0.1 and before, the error was silently swallowed by the combining code.
Now it will produce a message “Couldn’t combine data file” and ignore the
data file as it used to do before 7.0.2. Closes issue 1522 [https://github.com/nedbat/coveragepy/issues/1522].

Version 7.0.2 — 2023-01-02

	Fix: when using the [run] relative_files = True setting, a relative
[paths] pattern was still being made absolute. This is now fixed,
closing issue 1519 [https://github.com/nedbat/coveragepy/issues/1519].

	Fix: if Python doesn’t provide tomllib, then TOML configuration files can
only be read if coverage.py is installed with the [toml] extra.
Coverage.py will raise an error if TOML support is not installed when it sees
your settings are in a .toml file. But it didn’t understand that
[tools.coverage] was a valid section header, so the error wasn’t reported
if you used that header, and settings were silently ignored. This is now
fixed, closing issue 1516 [https://github.com/nedbat/coveragepy/issues/1516].

	Fix: adjusted how decorators are traced on PyPy 7.3.10, fixing issue 1515 [https://github.com/nedbat/coveragepy/issues/1515].

	Fix: the coverage lcov report did not properly implement the
--fail-under=MIN option. This has been fixed.

	Refactor: added many type annotations, including a number of refactorings.
This should not affect outward behavior, but they were a bit invasive in some
places, so keep your eyes peeled for oddities.

	Refactor: removed the vestigial and long untested support for Jython and
IronPython.

Version 7.0.1 — 2022-12-23

	When checking if a file mapping resolved to a file that exists, we weren’t
considering files in .whl files. This is now fixed, closing issue 1511 [https://github.com/nedbat/coveragepy/issues/1511].

	File pattern rules were too strict, forbidding plus signs and curly braces in
directory and file names. This is now fixed, closing issue 1513 [https://github.com/nedbat/coveragepy/issues/1513].

	Unusual Unicode or control characters in source files could prevent
reporting. This is now fixed, closing issue 1512 [https://github.com/nedbat/coveragepy/issues/1512].

	The PyPy wheel now installs on PyPy 3.7, 3.8, and 3.9, closing issue 1510 [https://github.com/nedbat/coveragepy/issues/1510].

Version 7.0.0 — 2022-12-18

Nothing new beyond 7.0.0b1.

Version 7.0.0b1 — 2022-12-03

A number of changes have been made to file path handling, including pattern
matching and path remapping with the [paths] setting (see
[paths]). These changes might affect you, and require you to
update your settings.

(This release includes the changes from 6.6.0b1, since
6.6.0 was never released.)

	Changes to file pattern matching, which might require updating your
configuration:

	Previously, * would incorrectly match directory separators, making
precise matching difficult. This is now fixed, closing issue 1407 [https://github.com/nedbat/coveragepy/issues/1407].

	Now ** matches any number of nested directories, including none.

	Improvements to combining data files when using the
[run] relative_files setting, which might require updating your
configuration:

	During coverage combine, relative file paths are implicitly combined
without needing a [paths] configuration setting. This also fixed
issue 991 [https://github.com/nedbat/coveragepy/issues/991].

	A [paths] setting like */foo will now match foo/bar.py so that
relative file paths can be combined more easily.

	The [run] relative_files setting is properly interpreted in
more places, fixing issue 1280 [https://github.com/nedbat/coveragepy/issues/1280].

	When remapping file paths with [paths], a path will be remapped only if
the resulting path exists. The documentation has long said the prefix had to
exist, but it was never enforced. This fixes issue 608 [https://github.com/nedbat/coveragepy/issues/608], improves issue
649 [https://github.com/nedbat/coveragepy/issues/649], and closes issue 757 [https://github.com/nedbat/coveragepy/issues/757].

	Reporting operations now implicitly use the [paths] setting to remap file
paths within a single data file. Combining multiple files still requires the
coverage combine step, but this simplifies some single-file situations.
Closes issue 1212 [https://github.com/nedbat/coveragepy/issues/1212] and issue 713 [https://github.com/nedbat/coveragepy/issues/713].

	The coverage report command now has a --format= option. The original
style is now --format=text, and is the default.

	Using --format=markdown will write the table in Markdown format, thanks
to Steve Oswald [https://github.com/nedbat/coveragepy/pull/1479], closing issue 1418 [https://github.com/nedbat/coveragepy/issues/1418].

	Using --format=total will write a single total number to the
output. This can be useful for making badges or writing status updates.

	Combining data files with coverage combine now hashes the data files to
skip files that add no new information. This can reduce the time needed.
Many details affect the speed-up, but for coverage.py’s own test suite,
combining is about 40% faster. Closes issue 1483 [https://github.com/nedbat/coveragepy/issues/1483].

	When searching for completely un-executed files, coverage.py uses the
presence of __init__.py files to determine which directories have source
that could have been imported. However, implicit namespace packages [https://peps.python.org/pep-0420/] don’t
require __init__.py. A new setting [report]
include_namespace_packages tells coverage.py to consider these directories
during reporting. Thanks to Felix Horvat [https://github.com/nedbat/coveragepy/pull/1387] for the
contribution. Closes issue 1383 [https://github.com/nedbat/coveragepy/issues/1383] and issue 1024 [https://github.com/nedbat/coveragepy/issues/1024].

	Fixed environment variable expansion in pyproject.toml files. It was overly
broad, causing errors outside of coverage.py settings, as described in issue
1481 [https://github.com/nedbat/coveragepy/issues/1481] and issue 1345 [https://github.com/nedbat/coveragepy/issues/1345]. This is now fixed, but in rare cases will require
changing your pyproject.toml to quote non-string values that use environment
substitution.

	An empty file has a coverage total of 100%, but used to fail with
--fail-under. This has been fixed, closing issue 1470 [https://github.com/nedbat/coveragepy/issues/1470].

	The text report table no longer writes out two separator lines if there are
no files listed in the table. One is plenty.

	Fixed a mis-measurement of a strange use of wildcard alternatives in
match/case statements, closing issue 1421 [https://github.com/nedbat/coveragepy/issues/1421].

	Fixed internal logic that prevented coverage.py from running on
implementations other than CPython or PyPy (issue 1474 [https://github.com/nedbat/coveragepy/issues/1474]).

	The deprecated [run] note setting has been completely removed.

Version 6.6.0b1 — 2022-10-31

(Note: 6.6.0 final was never released. These changes are part of 7.0.0b1.)

	Changes to file pattern matching, which might require updating your
configuration:

	Previously, * would incorrectly match directory separators, making
precise matching difficult. This is now fixed, closing issue 1407 [https://github.com/nedbat/coveragepy/issues/1407].

	Now ** matches any number of nested directories, including none.

	Improvements to combining data files when using the
[run] relative_files setting:

	During coverage combine, relative file paths are implicitly combined
without needing a [paths] configuration setting. This also fixed
issue 991 [https://github.com/nedbat/coveragepy/issues/991].

	A [paths] setting like */foo will now match foo/bar.py so that
relative file paths can be combined more easily.

	The setting is properly interpreted in more places, fixing issue 1280 [https://github.com/nedbat/coveragepy/issues/1280].

	Fixed environment variable expansion in pyproject.toml files. It was overly
broad, causing errors outside of coverage.py settings, as described in issue
1481 [https://github.com/nedbat/coveragepy/issues/1481] and issue 1345 [https://github.com/nedbat/coveragepy/issues/1345]. This is now fixed, but in rare cases will require
changing your pyproject.toml to quote non-string values that use environment
substitution.

	Fixed internal logic that prevented coverage.py from running on
implementations other than CPython or PyPy (issue 1474 [https://github.com/nedbat/coveragepy/issues/1474]).

Version 6.5.0 — 2022-09-29

	The JSON report now includes details of which branches were taken, and which
are missing for each file. Thanks, Christoph Blessing [https://github.com/nedbat/coveragepy/pull/1438]. Closes
issue 1425 [https://github.com/nedbat/coveragepy/issues/1425].

	Starting with coverage.py 6.2, class statements were marked as a branch.
This wasn’t right, and has been reverted, fixing issue 1449 [https://github.com/nedbat/coveragepy/issues/1449]. Note this
will very slightly reduce your coverage total if you are measuring branch
coverage.

	Packaging is now compliant with PEP 517 [https://peps.python.org/pep-0517/], closing issue 1395 [https://github.com/nedbat/coveragepy/issues/1395].

	A new debug option --debug=pathmap shows details of the remapping of
paths that happens during combine due to the [paths] setting.

	Fix an internal problem with caching of invalid Python parsing. Found by
OSS-Fuzz, fixing their bug 50381 [https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=50381].

Version 6.4.4 — 2022-08-16

	Wheels are now provided for Python 3.11.

Version 6.4.3 — 2022-08-06

	Fix a failure when combining data files if the file names contained glob-like
patterns. Thanks, Michael Krebs and Benjamin Schubert [https://github.com/nedbat/coveragepy/issues/1405].

	Fix a messaging failure when combining Windows data files on a different
drive than the current directory, closing issue 1428 [https://github.com/nedbat/coveragepy/issues/1428]. Thanks, Lorenzo
Micò [https://github.com/nedbat/coveragepy/pull/1430].

	Fix path calculations when running in the root directory, as you might do in
a Docker container. Thanks Arthur Rio [https://github.com/nedbat/coveragepy/issues/1403].

	Filtering in the HTML report wouldn’t work when reloading the index page.
This is now fixed. Thanks, Marc Legendre [https://github.com/nedbat/coveragepy/issues/1413].

	Fix a problem with Cython code measurement, closing issue 972 [https://github.com/nedbat/coveragepy/issues/972]. Thanks,
Matus Valo [https://github.com/nedbat/coveragepy/pull/1347].

Version 6.4.2 — 2022-07-12

	Updated for a small change in Python 3.11.0 beta 4: modules now start with a
line with line number 0, which is ignored. This line cannot be executed, so
coverage totals were thrown off. This line is now ignored by coverage.py,
but this also means that truly empty modules (like __init__.py) have no
lines in them, rather than one phantom line. Fixes issue 1419 [https://github.com/nedbat/coveragepy/issues/1419].

	Internal debugging data added to sys.modules is now an actual module, to
avoid confusing code that examines everything in sys.modules. Thanks,
Yilei Yang [https://github.com/nedbat/coveragepy/pull/1399].

Version 6.4.1 — 2022-06-02

	Greatly improved performance on PyPy, and other environments that need the
pure Python trace function. Thanks, Carl Friedrich Bolz-Tereick (pull
1381 [https://github.com/nedbat/coveragepy/pull/1381] and pull 1388 [https://github.com/nedbat/coveragepy/pull/1388]). Slightly improved performance when using the C
trace function, as most environments do. Closes issue 1339 [https://github.com/nedbat/coveragepy/issues/1339].

	The conditions for using tomllib from the standard library have been made
more precise, so that 3.11 alphas will continue to work. Closes issue
1390 [https://github.com/nedbat/coveragepy/issues/1390].

Version 6.4 — 2022-05-22

	A new setting, [run] sigterm, controls whether a SIGTERM signal
handler is used. In 6.3, the signal handler was always installed, to capture
data at unusual process ends. Unfortunately, this introduced other problems
(see issue 1310 [https://github.com/nedbat/coveragepy/issues/1310]). Now the signal handler is only used if you opt-in by
setting [run] sigterm = true.

	Small changes to the HTML report:

	Added links to next and previous file, and more keyboard shortcuts: [
and] for next file and previous file; u for up to the index; and
? to open/close the help panel. Thanks, J. M. F. Tsang [https://github.com/nedbat/coveragepy/pull/1364].

	The time stamp and version are displayed at the top of the report. Thanks,
Ammar Askar [https://github.com/nedbat/coveragepy/pull/1354]. Closes issue 1351 [https://github.com/nedbat/coveragepy/issues/1351].

	A new debug option debug=sqldata adds more detail to debug=sql,
logging all the data being written to the database.

	Previously, running coverage report (or any of the reporting commands) in
an empty directory would create a .coverage data file. Now they do not,
fixing issue 1328 [https://github.com/nedbat/coveragepy/issues/1328].

	On Python 3.11, the [toml] extra no longer installs tomli, instead using
tomllib from the standard library. Thanks Shantanu [https://github.com/nedbat/coveragepy/pull/1359].

	In-memory CoverageData objects now properly update(), closing issue 1323 [https://github.com/nedbat/coveragepy/issues/1323].

Version 6.3.3 — 2022-05-12

	Fix: Coverage.py now builds successfully on CPython 3.11 (3.11.0b1) again.
Closes issue 1367 [https://github.com/nedbat/coveragepy/issues/1367]. Some results for generators may have changed.

Version 6.3.2 — 2022-02-20

	Fix: adapt to pypy3.9’s decorator tracing behavior. It now traces function
decorators like CPython 3.8: both the @-line and the def-line are traced.
Fixes issue 1326 [https://github.com/nedbat/coveragepy/issues/1326].

	Debug: added pybehave to the list of coverage debug
and --debug options.

	Fix: show an intelligible error message if --concurrency=multiprocessing
is used without a configuration file. Closes issue 1320 [https://github.com/nedbat/coveragepy/issues/1320].

Version 6.3.1 — 2022-02-01

	Fix: deadlocks could occur when terminating processes. Some of these
deadlocks (described in issue 1310 [https://github.com/nedbat/coveragepy/issues/1310]) are now fixed.

	Fix: a signal handler was being set from multiple threads, causing an error:
“ValueError: signal only works in main thread”. This is now fixed, closing
issue 1312 [https://github.com/nedbat/coveragepy/issues/1312].

	Fix: --precision on the command-line was being ignored while considering
--fail-under. This is now fixed, thanks to
Marcelo Trylesinski [https://github.com/nedbat/coveragepy/pull/1317].

	Fix: releases no longer provide 3.11.0-alpha wheels. Coverage.py uses CPython
internal fields which are moving during the alpha phase. Fixes issue 1316 [https://github.com/nedbat/coveragepy/issues/1316].

Version 6.3 — 2022-01-25

	Feature: Added the lcov command to generate reports in LCOV format.
Thanks, Bradley Burns [https://github.com/nedbat/coveragepy/pull/1289]. Closes issues 587 [https://github.com/nedbat/coveragepy/issues/587]
and 626 [https://github.com/nedbat/coveragepy/issues/626].

	Feature: the coverage data file can now be specified on the command line with
the --data-file option in any command that reads or writes data. This is
in addition to the existing COVERAGE_FILE environment variable. Closes
issue 624 [https://github.com/nedbat/coveragepy/issues/624]. Thanks, Nikita Bloshchanevich [https://github.com/nedbat/coveragepy/pull/1304].

	Feature: coverage measurement data will now be written when a SIGTERM signal
is received by the process. This includes
Process.terminate [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process.terminate],
and other ways to terminate a process. Currently this is only on Linux and
Mac; Windows is not supported. Fixes issue 1307 [https://github.com/nedbat/coveragepy/issues/1307].

	Dropped support for Python 3.6, which reached end-of-life on 2021-12-23.

	Updated Python 3.11 support to 3.11.0a4, fixing issue 1294 [https://github.com/nedbat/coveragepy/issues/1294].

	Fix: the coverage data file is now created in a more robust way, to avoid
problems when multiple processes are trying to write data at once. Fixes
issues 1303 [https://github.com/nedbat/coveragepy/issues/1303] and 883 [https://github.com/nedbat/coveragepy/issues/883].

	Fix: a .gitignore file will only be written into the HTML report output
directory if the directory is empty. This should prevent certain unfortunate
accidents of writing the file where it is not wanted.

	Releases now have MacOS arm64 wheels for Apple Silicon, fixing issue 1288 [https://github.com/nedbat/coveragepy/issues/1288].

Version 6.2 — 2021-11-26

	Feature: Now the --concurrency setting can now have a list of values, so
that threads and another lightweight threading package can be measured
together, such as --concurrency=gevent,thread. Closes issue 1012 [https://github.com/nedbat/coveragepy/issues/1012] and
issue 1082 [https://github.com/nedbat/coveragepy/issues/1082].

	Fix: A module specified as the source setting is imported during startup,
before the user program imports it. This could cause problems if the rest of
the program isn’t ready yet. For example, issue 1203 [https://github.com/nedbat/coveragepy/issues/1203] describes a Django
setting that is accessed before settings have been configured. Now the early
import is wrapped in a try/except so errors then don’t stop execution.

	Fix: A colon in a decorator expression would cause an exclusion to end too
early, preventing the exclusion of the decorated function. This is now fixed.

	Fix: The HTML report now will not overwrite a .gitignore file that already
exists in the HTML output directory (follow-on for issue 1244 [https://github.com/nedbat/coveragepy/issues/1244]).

	API: The exceptions raised by Coverage.py have been specialized, to provide
finer-grained catching of exceptions by third-party code.

	API: Using suffix=False when constructing a Coverage object with
multiprocessing wouldn’t suppress the data file suffix (issue 989 [https://github.com/nedbat/coveragepy/issues/989]). This
is now fixed.

	Debug: The coverage debug data command will now sniff out combinable data
files, and report on all of them.

	Debug: The coverage debug command used to accept a number of topics at a
time, and show all of them, though this was never documented. This no longer
works, to allow for command-line options in the future.

Version 6.1.2 — 2021-11-10

	Python 3.11 is supported (tested with 3.11.0a2). One still-open issue has to
do with exits through with-statements [https://github.com/nedbat/coveragepy/issues/1270].

	Fix: When remapping file paths through the [paths] setting while
combining, the [run] relative_files setting was ignored, resulting in
absolute paths for remapped file names (issue 1147 [https://github.com/nedbat/coveragepy/issues/1147]). This is now fixed.

	Fix: Complex conditionals over excluded lines could have incorrectly reported
a missing branch (issue 1271 [https://github.com/nedbat/coveragepy/issues/1271]). This is now fixed.

	Fix: More exceptions are now handled when trying to parse source files for
reporting. Problems that used to terminate coverage.py can now be handled
with [report] ignore_errors. This helps with plugins failing to read
files (django_coverage_plugin issue 78 [https://github.com/nedbat/django_coverage_plugin/issues/78]).

	Fix: Removed another vestige of jQuery from the source tarball
(issue 840 [https://github.com/nedbat/coveragepy/issues/840]).

	Fix: Added a default value for a new-to-6.x argument of an internal class.
This unsupported class is being used by coveralls (issue 1273 [https://github.com/nedbat/coveragepy/issues/1273]). Although
I’d rather not “fix” unsupported interfaces, it’s actually nicer with a
default value.

Version 6.1.1 — 2021-10-31

	Fix: The sticky header on the HTML report didn’t work unless you had branch
coverage enabled. This is now fixed: the sticky header works for everyone.
(Do people still use coverage without branch measurement!? j/k)

	Fix: When using explicitly declared namespace packages, the “already imported
a file that will be measured” warning would be issued (issue 888 [https://github.com/nedbat/coveragepy/issues/888]). This
is now fixed.

Version 6.1 — 2021-10-30

	Deprecated: The annotate command and the Coverage.annotate function
will be removed in a future version, unless people let me know that they are
using it. Instead, the html command gives better-looking (and more
accurate) output, and the report -m command will tell you line numbers of
missing lines. Please get in touch if you have a reason to use annotate
over those better options: ned@nedbatchelder.com.

	Feature: Coverage now sets an environment variable, COVERAGE_RUN when
running your code with the coverage run command. The value is not
important, and may change in the future. Closes issue 553 [https://github.com/nedbat/coveragepy/issues/553].

	Feature: The HTML report pages for Python source files now have a sticky
header so the file name and controls are always visible.

	Feature: The xml and json commands now describe what they wrote
where.

	Feature: The html, combine, xml, and json commands all accept
a -q/--quiet option to suppress the messages they write to stdout about
what they are doing (issue 1254 [https://github.com/nedbat/coveragepy/issues/1254]).

	Feature: The html command writes a .gitignore file into the HTML
output directory, to prevent the report from being committed to git. If you
want to commit it, you will need to delete that file. Closes issue 1244 [https://github.com/nedbat/coveragepy/issues/1244].

	Feature: Added support for PyPy 3.8.

	Fix: More generated code is now excluded from measurement. Code such as
attrs [https://www.attrs.org/] boilerplate, or doctest code, was being measured though the
synthetic line numbers meant they were never reported. Once Cython was
involved though, the generated .so files were parsed as Python, raising
syntax errors, as reported in issue 1160 [https://github.com/nedbat/coveragepy/issues/1160]. This is now fixed.

	Fix: When sorting human-readable names, numeric components are sorted
correctly: file10.py will appear after file9.py. This applies to file names,
module names, environment variables, and test contexts.

	Performance: Branch coverage measurement is faster, though you might only
notice on code that is executed many times, such as long-running loops.

	Build: jQuery is no longer used or vendored (issue 840 [https://github.com/nedbat/coveragepy/issues/840] and issue 1118 [https://github.com/nedbat/coveragepy/issues/1118]).
Huge thanks to Nils Kattenbeck (septatrix) for the conversion to vanilla
JavaScript in pull request 1248 [https://github.com/nedbat/coveragepy/pull/1248].

Version 6.0.2 — 2021-10-11

	Namespace packages being measured weren’t properly handled by the new code
that ignores third-party packages. If the namespace package was installed, it
was ignored as a third-party package. That problem (issue 1231 [https://github.com/nedbat/coveragepy/issues/1231]) is now
fixed.

	Packages named as “source packages” (with source, or source_pkgs, or
pytest-cov’s --cov) might have been only partially measured. Their
top-level statements could be marked as un-executed, because they were
imported by coverage.py before measurement began (issue 1232 [https://github.com/nedbat/coveragepy/issues/1232]). This is
now fixed, but the package will be imported twice, once by coverage.py, then
again by your test suite. This could cause problems if importing the package
has side effects.

	The CoverageData.contexts_by_lineno() method was documented to return
a dict, but was returning a defaultdict. Now it returns a plain dict. It
also no longer returns negative numbered keys.

Version 6.0.1 — 2021-10-06

	In 6.0, the coverage.py exceptions moved from coverage.misc to
coverage.exceptions. These exceptions are not part of the public supported
API, CoverageException is. But a number of other third-party packages were
importing the exceptions from coverage.misc, so they are now available from
there again (issue 1226 [https://github.com/nedbat/coveragepy/issues/1226]).

	Changed an internal detail of how tomli is imported, so that tomli can use
coverage.py for their own test suite (issue 1228 [https://github.com/nedbat/coveragepy/issues/1228]).

	Defend against an obscure possibility under code obfuscation, where a
function can have an argument called “self”, but no local named “self”
(pull request 1210 [https://github.com/nedbat/coveragepy/pull/1210]). Thanks, Ben Carlsson.

Version 6.0 — 2021-10-03

	The coverage html command now prints a message indicating where the HTML
report was written. Fixes issue 1195 [https://github.com/nedbat/coveragepy/issues/1195].

	The coverage combine command now prints messages indicating each data
file being combined. Fixes issue 1105 [https://github.com/nedbat/coveragepy/issues/1105].

	The HTML report now includes a sentence about skipped files due to
skip_covered or skip_empty settings. Fixes issue 1163 [https://github.com/nedbat/coveragepy/issues/1163].

	Unrecognized options in the configuration file are no longer errors. They are
now warnings, to ease the use of coverage across versions. Fixes issue
1035 [https://github.com/nedbat/coveragepy/issues/1035].

	Fix handling of exceptions through context managers in Python 3.10. A missing
exception is no longer considered a missing branch from the with statement.
Fixes issue 1205 [https://github.com/nedbat/coveragepy/issues/1205].

	Fix another rarer instance of “Error binding parameter 0 - probably
unsupported type.” (issue 1010 [https://github.com/nedbat/coveragepy/issues/1010]).

	Creating a directory for the coverage data file now is safer against
conflicts when two coverage runs happen simultaneously (pull 1220 [https://github.com/nedbat/coveragepy/pull/1220]).
Thanks, Clément Pit-Claudel.

Version 6.0b1 — 2021-07-18

	Dropped support for Python 2.7, PyPy 2, and Python 3.5.

	Added support for the Python 3.10 match/case syntax.

	Data collection is now thread-safe. There may have been rare instances of
exceptions raised in multi-threaded programs.

	Plugins (like the Django coverage plugin [https://pypi.org/project/django-coverage-plugin/]) were generating “Already
imported a file that will be measured” warnings about Django itself. These
have been fixed, closing issue 1150 [https://github.com/nedbat/coveragepy/issues/1150].

	Warnings generated by coverage.py are now real Python warnings.

	Using --fail-under=100 with coverage near 100% could result in the
self-contradictory message total of 100 is less than fail-under=100.
This bug (issue 1168 [https://github.com/nedbat/coveragepy/issues/1168]) is now fixed.

	The COVERAGE_DEBUG_FILE environment variable now accepts stdout and
stderr to write to those destinations.

	TOML parsing now uses the tomli [https://pypi.org/project/tomli/] library.

	Some minor changes to usually invisible details of the HTML report:

	Use a modern hash algorithm when fingerprinting, for high-security
environments (issue 1189 [https://github.com/nedbat/coveragepy/issues/1189]). When generating the HTML report, we save the
hash of the data, to avoid regenerating an unchanged HTML page. We used to
use MD5 to generate the hash, and now use SHA-3-256. This was never a
security concern, but security scanners would notice the MD5 algorithm and
raise a false alarm.

	Change how report file names are generated, to avoid leading underscores
(issue 1167 [https://github.com/nedbat/coveragepy/issues/1167]), to avoid rare file name collisions (issue 584 [https://github.com/nedbat/coveragepy/issues/584]), and to
avoid file names becoming too long (issue 580 [https://github.com/nedbat/coveragepy/issues/580]).

Version 5.6b1 — 2021-04-13

Note: 5.6 final was never released. These changes are part of 6.0.

	Third-party packages are now ignored in coverage reporting. This solves a
few problems:

	Coverage will no longer report about other people’s code (issue 876 [https://github.com/nedbat/coveragepy/issues/876]).
This is true even when using --source=. with a venv in the current
directory.

	Coverage will no longer generate “Already imported a file that will be
measured” warnings about coverage itself (issue 905 [https://github.com/nedbat/coveragepy/issues/905]).

	The HTML report uses j/k to move up and down among the highlighted chunks of
code. They used to highlight the current chunk, but 5.0 broke that behavior.
Now the highlighting is working again.

	The JSON report now includes percent_covered_display, a string with the
total percentage, rounded to the same number of decimal places as the other
reports’ totals.

Version 5.5 — 2021-02-28

	coverage combine has a new option, --keep to keep the original data
files after combining them. The default is still to delete the files after
they have been combined. This was requested in issue 1108 [https://github.com/nedbat/coveragepy/issues/1108] and implemented
in pull request 1110 [https://github.com/nedbat/coveragepy/pull/1110]. Thanks, Éric Larivière.

	When reporting missing branches in coverage report, branches aren’t
reported that jump to missing lines. This adds to the long-standing behavior
of not reporting branches from missing lines. Now branches are only reported
if both the source and destination lines are executed. Closes both issue
1065 [https://github.com/nedbat/coveragepy/issues/1065] and issue 955 [https://github.com/nedbat/coveragepy/issues/955].

	Minor improvements to the HTML report:

	The state of the line visibility selector buttons is saved in local storage
so you don’t have to fiddle with them so often, fixing issue 1123 [https://github.com/nedbat/coveragepy/issues/1123].

	It has a little more room for line numbers so that 4-digit numbers work
well, fixing issue 1124 [https://github.com/nedbat/coveragepy/issues/1124].

	Improved the error message when combining line and branch data, so that users
will be more likely to understand what’s happening, closing issue 803 [https://github.com/nedbat/coveragepy/issues/803].

Version 5.4 — 2021-01-24

	The text report produced by coverage report now always outputs a TOTAL
line, even if only one Python file is reported. This makes regex parsing
of the output easier. Thanks, Judson Neer. This had been requested a number
of times (issue 1086 [https://github.com/nedbat/coveragepy/issues/1086], issue 922 [https://github.com/nedbat/coveragepy/issues/922], issue 732 [https://github.com/nedbat/coveragepy/issues/732]).

	The skip_covered and skip_empty settings in the configuration file
can now be specified in the [html] section, so that text reports and HTML
reports can use separate settings. The HTML report will still use the
[report] settings if there isn’t a value in the [html] section.
Closes issue 1090 [https://github.com/nedbat/coveragepy/issues/1090].

	Combining files on Windows across drives now works properly, fixing issue
577 [https://github.com/nedbat/coveragepy/issues/577]. Thanks, Valentin Lab [https://github.com/nedbat/coveragepy/pull/1080].

	Fix an obscure warning from deep in the _decimal module, as reported in
issue 1084 [https://github.com/nedbat/coveragepy/issues/1084].

	Update to support Python 3.10 alphas in progress, including PEP 626: Precise
line numbers for debugging and other tools [https://www.python.org/dev/peps/pep-0626/].

Version 5.3.1 — 2020-12-19

	When using --source on a large source tree, v5.x was slower than previous
versions. This performance regression is now fixed, closing issue 1037 [https://github.com/nedbat/coveragepy/issues/1037].

	Mysterious SQLite errors can happen on PyPy, as reported in issue 1010 [https://github.com/nedbat/coveragepy/issues/1010]. An
immediate retry seems to fix the problem, although it is an unsatisfying
solution.

	The HTML report now saves the sort order in a more widely supported way,
fixing issue 986 [https://github.com/nedbat/coveragepy/issues/986]. Thanks, Sebastián Ramírez (pull request 1066 [https://github.com/nedbat/coveragepy/pull/1066]).

	The HTML report pages now have a Sleepy Snake favicon.

	Wheels are now provided for manylinux2010, and for PyPy3 (pp36 and pp37).

	Continuous integration has moved from Travis and AppVeyor to GitHub Actions.

Version 5.3 — 2020-09-13

	The source setting has always been interpreted as either a file path or a
module, depending on which existed. If both interpretations were valid, it
was assumed to be a file path. The new source_pkgs setting can be used
to name a package to disambiguate this case. Thanks, Thomas Grainger. Fixes
issue 268 [https://github.com/nedbat/coveragepy/issues/268].

	If a plugin was disabled due to an exception, we used to still try to record
its information, causing an exception, as reported in issue 1011 [https://github.com/nedbat/coveragepy/issues/1011]. This is
now fixed.

Version 5.2.1 — 2020-07-23

	The dark mode HTML report still used light colors for the context listing,
making them unreadable (issue 1009 [https://github.com/nedbat/coveragepy/issues/1009]). This is now fixed.

	The time stamp on the HTML report now includes the time zone. Thanks, Xie
Yanbo (pull request 960 [https://github.com/nedbat/coveragepy/pull/960]).

Version 5.2 — 2020-07-05

	The HTML report has been redesigned by Vince Salvino. There is now a dark
mode, the code text is larger, and system sans serif fonts are used, in
addition to other small changes (issue 858 [https://github.com/nedbat/coveragepy/issues/858] and pull request 931 [https://github.com/nedbat/coveragepy/pull/931]).

	The coverage report and coverage html commands now accept a
--precision option to control the number of decimal points displayed.
Thanks, Teake Nutma (pull request 982 [https://github.com/nedbat/coveragepy/pull/982]).

	The coverage report and coverage html commands now accept a
--no-skip-covered option to negate --skip-covered. Thanks, Anthony
Sottile (issue 779 [https://github.com/nedbat/coveragepy/issues/779] and pull request 932 [https://github.com/nedbat/coveragepy/pull/932]).

	The --skip-empty option is now available for the XML report, closing
issue 976 [https://github.com/nedbat/coveragepy/issues/976].

	The coverage report command now accepts a --sort option to specify
how to sort the results. Thanks, Jerin Peter George (pull request 1005 [https://github.com/nedbat/coveragepy/pull/1005]).

	If coverage fails due to the coverage total not reaching the --fail-under
value, it will now print a message making the condition clear. Thanks,
Naveen Yadav (pull request 977 [https://github.com/nedbat/coveragepy/pull/977]).

	TOML configuration files with non-ASCII characters would cause errors on
Windows (issue 990 [https://github.com/nedbat/coveragepy/issues/990]). This is now fixed.

	The output of --debug=trace now includes information about how the
--source option is being interpreted, and the module names being
considered.

Version 5.1 — 2020-04-12

	The JSON report now includes counts of covered and missing branches. Thanks,
Salvatore Zagaria.

	On Python 3.8, try-finally-return reported wrong branch coverage with
decorated async functions (issue 964 [https://github.com/nedbat/coveragepy/issues/964]). This is now fixed. Thanks, Kjell
Braden.

	The get_option() and
set_option() methods can now manipulate the
[paths] configuration setting. Thanks to Bernát Gábor for the fix for
issue 967 [https://github.com/nedbat/coveragepy/issues/967].

Version 5.0.4 — 2020-03-16

	If using the [run] relative_files setting, the XML report will use
relative files in the <source> elements indicating the location of source
code. Closes issue 948 [https://github.com/nedbat/coveragepy/issues/948].

	The textual summary report could report missing lines with negative line
numbers on PyPy3 7.1 (issue 943 [https://github.com/nedbat/coveragepy/issues/943]). This is now fixed.

	Windows wheels for Python 3.8 were incorrectly built, but are now fixed.
(issue 949 [https://github.com/nedbat/coveragepy/issues/949])

	Updated Python 3.9 support to 3.9a4.

	HTML reports couldn’t be sorted if localStorage wasn’t available. This is now
fixed: sorting works even though the sorting setting isn’t retained. (issue
944 [https://github.com/nedbat/coveragepy/issues/944] and pull request 945 [https://github.com/nedbat/coveragepy/pull/945]). Thanks, Abdeali Kothari.

Version 5.0.3 — 2020-01-12

	A performance improvement in 5.0.2 didn’t work for test suites that changed
directory before combining data, causing “Couldn’t use data file: no such
table: meta” errors (issue 916 [https://github.com/nedbat/coveragepy/issues/916]). This is now fixed.

	Coverage could fail to run your program with some form of “ModuleNotFound” or
“ImportError” trying to import from the current directory. This would happen
if coverage had been packaged into a zip file (for example, on Windows), or
was found indirectly (for example, by pyenv-virtualenv). A number of
different scenarios were described in issue 862 [https://github.com/nedbat/coveragepy/issues/862] which is now fixed. Huge
thanks to Agbonze O. Jeremiah for reporting it, and Alexander Waters and
George-Cristian Bîrzan for protracted debugging sessions.

	Added the “premain” debug option.

	Added SQLite compile-time options to the “debug sys” output.

Version 5.0.2 — 2020-01-05

	Programs that used multiprocessing and changed directories would fail under
coverage. This is now fixed (issue 890 [https://github.com/nedbat/coveragepy/issues/890]). A side effect is that debug
information about the config files read now shows absolute paths to the
files.

	When running programs as modules (coverage run -m) with --source,
some measured modules were imported before coverage starts. This resulted in
unwanted warnings (“Already imported a file that will be measured”) and a
reduction in coverage totals (issue 909 [https://github.com/nedbat/coveragepy/issues/909]). This is now fixed.

	If no data was collected, an exception about “No data to report” could happen
instead of a 0% report being created (issue 884 [https://github.com/nedbat/coveragepy/issues/884]). This is now fixed.

	The handling of source files with non-encodable file names has changed.
Previously, if a file name could not be encoded as UTF-8, an error occurred,
as described in issue 891 [https://github.com/nedbat/coveragepy/issues/891]. Now, those files will not be measured, since
their data would not be recordable.

	A new warning (“dynamic-conflict”) is issued if two mechanisms are trying to
change the dynamic context. Closes issue 901 [https://github.com/nedbat/coveragepy/issues/901].

	coverage run --debug=sys would fail with an AttributeError. This is now
fixed (issue 907 [https://github.com/nedbat/coveragepy/issues/907]).

Version 5.0.1 — 2019-12-22

	If a 4.x data file is the cause of a “file is not a database” error, then use
a more specific error message, “Looks like a coverage 4.x data file, are you
mixing versions of coverage?” Helps diagnose the problems described in
issue 886 [https://github.com/nedbat/coveragepy/issues/886].

	Measurement contexts and relative file names didn’t work together, as
reported in issue 899 [https://github.com/nedbat/coveragepy/issues/899] and issue 900 [https://github.com/nedbat/coveragepy/issues/900]. This is now fixed, thanks to
David Szotten.

	When using coverage run --concurrency=multiprocessing, all data files
should be named with parallel-ready suffixes. 5.0 mistakenly named the main
process’ file with no suffix when using --append. This is now fixed,
closing issue 880 [https://github.com/nedbat/coveragepy/issues/880].

	Fixed a problem on Windows when the current directory is changed to a
different drive (issue 895 [https://github.com/nedbat/coveragepy/issues/895]). Thanks, Olivier Grisel.

	Updated Python 3.9 support to 3.9a2.

Version 5.0 — 2019-12-14

Nothing new beyond 5.0b2.

A summary of major changes in 5.0 since 4.5.x is in see Major changes in 5.0.

Version 5.0b2 — 2019-12-08

	An experimental [run] relative_files setting tells coverage to store
relative file names in the data file. This makes it easier to run tests in
one (or many) environments, and then report in another. It has not had much
real-world testing, so it may change in incompatible ways in the future.

	When constructing a coverage.Coverage object, data_file can be
specified as None to prevent writing any data file at all. In previous
versions, an explicit data_file=None argument would use the default of
“.coverage”. Fixes issue 871 [https://github.com/nedbat/coveragepy/issues/871].

	Python files run with -m now have __spec__ defined properly. This
fixes issue 745 [https://github.com/nedbat/coveragepy/issues/745] (about not being able to run unittest tests that spawn
subprocesses), and issue 838 [https://github.com/nedbat/coveragepy/issues/838], which described the problem directly.

	The [paths] configuration section is now ordered. If you specify more
than one list of patterns, the first one that matches will be used. Fixes
issue 649 [https://github.com/nedbat/coveragepy/issues/649].

	The coverage.numbits.register_sqlite_functions() function now also
registers numbits_to_nums for use in SQLite queries. Thanks, Simon
Willison.

	Python 3.9a1 is supported.

	Coverage.py has a mascot: Sleepy Snake.

Version 5.0b1 — 2019-11-11

	The HTML and textual reports now have a --skip-empty option that skips
files with no statements, notably __init__.py files. Thanks, Reya B.

	Configuration can now be read from TOML [https://toml.io/] files. This requires installing
coverage.py with the [toml] extra. The standard “pyproject.toml” file
will be read automatically if no other configuration file is found, with
settings in the [tool.coverage.] namespace. Thanks to Frazer McLean for
implementation and persistence. Finishes issue 664 [https://github.com/nedbat/coveragepy/issues/664].

	The [run] note setting has been deprecated. Using it will result in a
warning, and the note will not be written to the data file. The
corresponding CoverageData methods have been removed.

	The HTML report has been reimplemented (no more table around the source
code). This allowed for a better presentation of the context information,
hopefully resolving issue 855 [https://github.com/nedbat/coveragepy/issues/855].

	Added sqlite3 module version information to coverage debug sys output.

	Asking the HTML report to show contexts ([html] show_contexts=True or
coverage html --show-contexts) will issue a warning if there were no
contexts measured (issue 851 [https://github.com/nedbat/coveragepy/issues/851]).

Version 5.0a8 — 2019-10-02

	The CoverageData API has changed how queries are limited to
specific contexts. Now you use CoverageData.set_query_context() to
set a single exact-match string, or CoverageData.set_query_contexts()
to set a list of regular expressions to match contexts. This changes the
command-line --contexts option to use regular expressions instead of
filename-style wildcards.

Version 5.0a7 — 2019-09-21

	Data can now be “reported” in JSON format, for programmatic use, as requested
in issue 720 [https://github.com/nedbat/coveragepy/issues/720]. The new coverage json command writes raw and summarized
data to a JSON file. Thanks, Matt Bachmann.

	Dynamic contexts are now supported in the Python tracer, which is important
for PyPy users. Closes issue 846 [https://github.com/nedbat/coveragepy/issues/846].

	The compact line number representation introduced in 5.0a6 is called a
“numbits.” The coverage.numbits module provides functions for working
with them.

	The reporting methods used to permanently apply their arguments to the
configuration of the Coverage object. Now they no longer do. The arguments
affect the operation of the method, but do not persist.

	A class named “test_something” no longer confuses the test_function
dynamic context setting. Fixes issue 829 [https://github.com/nedbat/coveragepy/issues/829].

	Fixed an unusual tokenizing issue with backslashes in comments. Fixes
issue 822 [https://github.com/nedbat/coveragepy/issues/822].

	debug=plugin didn’t properly support configuration or dynamic context
plugins, but now it does, closing issue 834 [https://github.com/nedbat/coveragepy/issues/834].

Version 5.0a6 — 2019-07-16

	Reporting on contexts. Big thanks to Stephan Richter and Albertas Agejevas
for the contribution.

	The --contexts option is available on the report and html
commands. It’s a comma-separated list of shell-style wildcards, selecting
the contexts to report on. Only contexts matching one of the wildcards
will be included in the report.

	The --show-contexts option for the html command adds context
information to each covered line. Hovering over the “ctx” marker at the
end of the line reveals a list of the contexts that covered the line.

	Database changes:

	Line numbers are now stored in a much more compact way. For each file and
context, a single binary string is stored with a bit per line number. This
greatly improves memory use, but makes ad-hoc use difficult.

	Dynamic contexts with no data are no longer written to the database.

	SQLite data storage is now faster. There’s no longer a reason to keep the
JSON data file code, so it has been removed.

	Changes to the CoverageData interface:

	The new CoverageData.dumps() method serializes the data to a string,
and a corresponding CoverageData.loads() method reconstitutes this
data. The format of the data string is subject to change at any time, and
so should only be used between two installations of the same version of
coverage.py.

	The CoverageData constructor has a new
argument, no_disk (default: False). Setting it to True prevents writing
any data to the disk. This is useful for transient data objects.

	Added the class method Coverage.current() to get the latest started
Coverage instance.

	Multiprocessing support in Python 3.8 was broken, but is now fixed. Closes
issue 828 [https://github.com/nedbat/coveragepy/issues/828].

	Error handling during reporting has changed slightly. All reporting methods
now behave the same. The --ignore-errors option keeps errors from
stopping the reporting, but files that couldn’t parse as Python will always
be reported as warnings. As with other warnings, you can suppress them with
the [run] disable_warnings configuration setting.

	Coverage.py no longer fails if the user program deletes its current
directory. Fixes issue 806 [https://github.com/nedbat/coveragepy/pull/806]. Thanks, Dan Hemberger.

	The scrollbar markers in the HTML report now accurately show the highlighted
lines, regardless of what categories of line are highlighted.

	The hack to accommodate ShiningPanda [https://plugins.jenkins.io/shiningpanda/] looking for an obsolete internal data
file has been removed, since ShiningPanda 0.22 fixed it four years ago.

	The deprecated Reporter.file_reporters property has been removed.

Version 5.0a5 — 2019-05-07

	Drop support for Python 3.4

	Dynamic contexts can now be set two new ways, both thanks to Justas
Sadzevičius.

	A plugin can implement a dynamic_context method to check frames for
whether a new context should be started. See
Dynamic Context Switchers for more details.

	Another tool (such as a test runner) can use the new
Coverage.switch_context() method to explicitly change the context.

	The dynamic_context = test_function setting now works with Python 2
old-style classes, though it only reports the method name, not the class it
was defined on. Closes issue 797 [https://github.com/nedbat/coveragepy/issues/797].

	fail_under values more than 100 are reported as errors. Thanks to Mike
Fiedler for closing issue 746 [https://github.com/nedbat/coveragepy/issues/746].

	The “missing” values in the text output are now sorted by line number, so
that missing branches are reported near the other lines they affect. The
values used to show all missing lines, and then all missing branches.

	Access to the SQLite database used for data storage is now thread-safe.
Thanks, Stephan Richter. This closes issue 702 [https://github.com/nedbat/coveragepy/issues/702].

	Combining data stored in SQLite is now about twice as fast, fixing issue
761 [https://github.com/nedbat/coveragepy/issues/761]. Thanks, Stephan Richter.

	The filename attribute on CoverageData objects has been made
private. You can use the data_filename method to get the actual file
name being used to store data, and the base_filename method to get the
original filename before parallelizing suffixes were added. This is part of
fixing issue 708 [https://github.com/nedbat/coveragepy/issues/708].

	Line numbers in the HTML report now align properly with source lines, even
when Chrome’s minimum font size is set, fixing issue 748 [https://github.com/nedbat/coveragepy/issues/748]. Thanks Wen Ye.

Version 5.0a4 — 2018-11-25

	You can specify the command line to run your program with the [run]
command_line configuration setting, as requested in issue 695 [https://github.com/nedbat/coveragepy/issues/695].

	Coverage will create directories as needed for the data file if they don’t
exist, closing issue 721 [https://github.com/nedbat/coveragepy/issues/721].

	The coverage run command has always adjusted the first entry in sys.path,
to properly emulate how Python runs your program. Now this adjustment is
skipped if sys.path[0] is already different than Python’s default. This
fixes issue 715 [https://github.com/nedbat/coveragepy/issues/715].

	Improvements to context support:

	The “no such table: meta” error is fixed.: issue 716 [https://github.com/nedbat/coveragepy/issues/716].

	Combining data files is now much faster.

	Python 3.8 (as of today!) passes all tests.

Version 5.0a3 — 2018-10-06

	Context support: static contexts let you specify a label for a coverage run,
which is recorded in the data, and retained when you combine files. See
Measurement contexts for more information.

	Dynamic contexts: specifying [run] dynamic_context = test_function in the
config file will record the test function name as a dynamic context during
execution. This is the core of “Who Tests What” (issue 170 [https://github.com/nedbat/coveragepy/issues/170]). Things to
note:

	There is no reporting support yet. Use SQLite to query the .coverage file
for information. Ideas are welcome about how reporting could be extended
to use this data.

	There’s a noticeable slow-down before any test is run.

	Data files will now be roughly N times larger, where N is the number of
tests you have. Combining data files is therefore also N times slower.

	No other values for dynamic_context are recognized yet. Let me know
what else would be useful. I’d like to use a pytest plugin to get better
information directly from pytest, for example.

	Environment variable substitution in configuration files now supports two
syntaxes for controlling the behavior of undefined variables: if VARNAME
is not defined, ${VARNAME?} will raise an error, and ${VARNAME-default
value} will use “default value”.

	Partial support for Python 3.8, which has not yet released an alpha. Fixes
issue 707 [https://github.com/nedbat/coveragepy/issues/707] and issue 714 [https://github.com/nedbat/coveragepy/issues/714].

Version 5.0a2 — 2018-09-03

	Coverage’s data storage has changed. In version 4.x, .coverage files were
basically JSON. Now, they are SQLite databases. This means the data file
can be created earlier than it used to. A large amount of code was
refactored to support this change.

	Because the data file is created differently than previous releases, you
may need parallel=true where you didn’t before.

	The old data format is still available (for now) by setting the environment
variable COVERAGE_STORAGE=json. Please tell me if you think you need to
keep the JSON format.

	The database schema is guaranteed to change in the future, to support new
features. I’m looking for opinions about making the schema part of the
public API to coverage.py or not.

	Development moved from Bitbucket [https://bitbucket.org] to GitHub [https://github.com/nedbat/coveragepy].

	HTML files no longer have trailing and extra white space.

	The sort order in the HTML report is stored in local storage rather than
cookies, closing issue 611 [https://github.com/nedbat/coveragepy/issues/611]. Thanks, Federico Bond.

	pickle2json, for converting v3 data files to v4 data files, has been removed.

Version 5.0a1 — 2018-06-05

	Coverage.py no longer supports Python 2.6 or 3.3.

	The location of the configuration file can now be specified with a
COVERAGE_RCFILE environment variable, as requested in issue 650 [https://github.com/nedbat/coveragepy/issues/650].

	Namespace packages are supported on Python 3.7, where they used to cause
TypeErrors about path being None. Fixes issue 700 [https://github.com/nedbat/coveragepy/issues/700].

	A new warning (already-imported) is issued if measurable files have
already been imported before coverage.py started measurement. See
Warnings for more information.

	Running coverage many times for small runs in a single process should be
faster, closing issue 625 [https://github.com/nedbat/coveragepy/issues/625]. Thanks, David MacIver.

	Large HTML report pages load faster. Thanks, Pankaj Pandey.

Version 4.5.4 — 2019-07-29

	Multiprocessing support in Python 3.8 was broken, but is now fixed. Closes
issue 828 [https://github.com/nedbat/coveragepy/issues/828].

Version 4.5.3 — 2019-03-09

	Only packaging metadata changes.

Version 4.5.2 — 2018-11-12

	Namespace packages are supported on Python 3.7, where they used to cause
TypeErrors about path being None. Fixes issue 700 [https://github.com/nedbat/coveragepy/issues/700].

	Python 3.8 (as of today!) passes all tests. Fixes issue 707 [https://github.com/nedbat/coveragepy/issues/707] and
issue 714 [https://github.com/nedbat/coveragepy/issues/714].

	Development moved from Bitbucket [https://bitbucket.org] to GitHub [https://github.com/nedbat/coveragepy].

Version 4.5.1 — 2018-02-10

	Now that 4.5 properly separated the [run] omit and [report] omit
settings, an old bug has become apparent. If you specified a package name
for [run] source, then omit patterns weren’t matched inside that package.
This bug (issue 638 [https://github.com/nedbat/coveragepy/issues/638]) is now fixed.

	On Python 3.7, reporting about a decorated function with no body other than a
docstring would crash coverage.py with an IndexError (issue 640 [https://github.com/nedbat/coveragepy/issues/640]). This is
now fixed.

	Configurer plugins are now reported in the output of --debug=sys.

Version 4.5 — 2018-02-03

	A new kind of plugin is supported: configurers are invoked at start-up to
allow more complex configuration than the .coveragerc file can easily do.
See Plug-in classes for details. This solves the complex configuration
problem described in issue 563 [https://github.com/nedbat/coveragepy/issues/563].

	The fail_under option can now be a float. Note that you must specify the
[report] precision configuration option for the fractional part to be
used. Thanks to Lars Hupfeldt Nielsen for help with the implementation.
Fixes issue 631 [https://github.com/nedbat/coveragepy/issues/631].

	The include and omit options can be specified for both the [run]
and [report] phases of execution. 4.4.2 introduced some incorrect
interactions between those phases, where the options for one were confused
for the other. This is now corrected, fixing issue 621 [https://github.com/nedbat/coveragepy/issues/621] and issue 622 [https://github.com/nedbat/coveragepy/issues/622].
Thanks to Daniel Hahler for seeing more clearly than I could.

	The coverage combine command used to always overwrite the data file, even
when no data had been read from apparently combinable files. Now, an error
is raised if we thought there were files to combine, but in fact none of them
could be used. Fixes issue 629 [https://github.com/nedbat/coveragepy/issues/629].

	The coverage combine command could get confused about path separators
when combining data collected on Windows with data collected on Linux, as
described in issue 618 [https://github.com/nedbat/coveragepy/issues/618]. This is now fixed: the result path always uses
the path separator specified in the [paths] result.

	On Windows, the HTML report could fail when source trees are deeply nested,
due to attempting to create HTML filenames longer than the 250-character
maximum. Now filenames will never get much larger than 200 characters,
fixing issue 627 [https://github.com/nedbat/coveragepy/issues/627]. Thanks to Alex Sandro for helping with the fix.

Version 4.4.2 — 2017-11-05

	Support for Python 3.7. In some cases, class and module docstrings are no
longer counted in statement totals, which could slightly change your total
results.

	Specifying both --source and --include no longer silently ignores the
include setting, instead it displays a warning. Thanks, Loïc Dachary. Closes
issue 265 [https://github.com/nedbat/coveragepy/issues/265] and issue 101 [https://github.com/nedbat/coveragepy/issues/101].

	Fixed a race condition when saving data and multiple threads are tracing
(issue 581 [https://github.com/nedbat/coveragepy/issues/581]). It could produce a “dictionary changed size during iteration”
RuntimeError. I believe this mostly but not entirely fixes the race
condition. A true fix would likely be too expensive. Thanks, Peter Baughman
for the debugging, and Olivier Grisel for the fix with tests.

	Configuration values which are file paths will now apply tilde-expansion,
closing issue 589 [https://github.com/nedbat/coveragepy/issues/589].

	Now secondary config files like tox.ini and setup.cfg can be specified
explicitly, and prefixed sections like [coverage:run] will be read. Fixes
issue 588 [https://github.com/nedbat/coveragepy/issues/588].

	Be more flexible about the command name displayed by help, fixing
issue 600 [https://github.com/nedbat/coveragepy/issues/600]. Thanks, Ben Finney.

Version 4.4.1 — 2017-05-14

	No code changes: just corrected packaging for Python 2.7 Linux wheels.

Version 4.4 — 2017-05-07

	Reports could produce the wrong file names for packages, reporting pkg.py
instead of the correct pkg/__init__.py. This is now fixed. Thanks, Dirk
Thomas.

	XML reports could produce <source> and <class> lines that together
didn’t specify a valid source file path. This is now fixed. (issue 526 [https://github.com/nedbat/coveragepy/issues/526])

	Namespace packages are no longer warned as having no code. (issue 572 [https://github.com/nedbat/coveragepy/issues/572])

	Code that uses sys.settrace(sys.gettrace()) in a file that wasn’t being
coverage-measured would prevent correct coverage measurement in following
code. An example of this was running doctests programmatically. This is now
fixed. (issue 575 [https://github.com/nedbat/coveragepy/issues/575])

	Errors printed by the coverage command now go to stderr instead of
stdout.

	Running coverage xml in a directory named with non-ASCII characters would
fail under Python 2. This is now fixed. (issue 573 [https://github.com/nedbat/coveragepy/issues/573])

Version 4.4b1 — 2017-04-04

	Some warnings can now be individually disabled. Warnings that can be
disabled have a short name appended. The [run] disable_warnings setting
takes a list of these warning names to disable. Closes both issue 96 [https://github.com/nedbat/coveragepy/issues/96] and
issue 355 [https://github.com/nedbat/coveragepy/issues/355].

	The XML report now includes attributes from version 4 of the Cobertura XML
format, fixing issue 570 [https://github.com/nedbat/coveragepy/issues/570].

	In previous versions, calling a method that used collected data would prevent
further collection. For example, save(), report(), html_report(), and
others would all stop collection. An explicit start() was needed to get it
going again. This is no longer true. Now you can use the collected data and
also continue measurement. Both issue 79 [https://github.com/nedbat/coveragepy/issues/79] and issue 448 [https://github.com/nedbat/coveragepy/issues/448] described this
problem, and have been fixed.

	Plugins can now find un-executed files if they choose, by implementing the
find_executable_files method. Thanks, Emil Madsen.

	Minimal IronPython support. You should be able to run IronPython programs
under coverage run, though you will still have to do the reporting phase
with CPython.

	Coverage.py has long had a special hack to support CPython’s need to measure
the coverage of the standard library tests. This code was not installed by
kitted versions of coverage.py. Now it is.

Version 4.3.4 — 2017-01-17

	Fixing 2.6 in version 4.3.3 broke other things, because the too-tricky
exception wasn’t properly derived from Exception, described in issue 556 [https://github.com/nedbat/coveragepy/issues/556].
A newb mistake; it hasn’t been a good few days.

Version 4.3.3 — 2017-01-17

	Python 2.6 support was broken due to a testing exception imported for the
benefit of the coverage.py test suite. Properly conditionalizing it fixed
issue 554 [https://github.com/nedbat/coveragepy/issues/554] so that Python 2.6 works again.

Version 4.3.2 — 2017-01-16

	Using the --skip-covered option on an HTML report with 100% coverage
would cause a “No data to report” error, as reported in issue 549 [https://github.com/nedbat/coveragepy/issues/549]. This is
now fixed; thanks, Loïc Dachary.

	If-statements can be optimized away during compilation, for example, if 0:
or if __debug__:. Coverage.py had problems properly understanding these
statements which existed in the source, but not in the compiled bytecode.
This problem, reported in issue 522 [https://github.com/nedbat/coveragepy/issues/522], is now fixed.

	If you specified --source as a directory, then coverage.py would look for
importable Python files in that directory, and could identify ones that had
never been executed at all. But if you specified it as a package name, that
detection wasn’t performed. Now it is, closing issue 426 [https://github.com/nedbat/coveragepy/issues/426]. Thanks to Loïc
Dachary for the fix.

	If you started and stopped coverage measurement thousands of times in your
process, you could crash Python with a “Fatal Python error: deallocating
None” error. This is now fixed. Thanks to Alex Groce for the bug report.

	On PyPy, measuring coverage in subprocesses could produce a warning: “Trace
function changed, measurement is likely wrong: None”. This was spurious, and
has been suppressed.

	Previously, coverage.py couldn’t start on Jython, due to that implementation
missing the multiprocessing module (issue 551 [https://github.com/nedbat/coveragepy/issues/551]). This problem has now been
fixed. Also, issue 322 [https://github.com/nedbat/coveragepy/issues/322] about not being able to invoke coverage
conveniently, seems much better: jython -m coverage run myprog.py works
properly.

	Let’s say you ran the HTML report over and over again in the same output
directory, with --skip-covered. And imagine due to your heroic
test-writing efforts, a file just achieved the goal of 100% coverage. With
coverage.py 4.3, the old HTML file with the less-than-100% coverage would be
left behind. This file is now properly deleted.

Version 4.3.1 — 2016-12-28

	Some environments couldn’t install 4.3, as described in issue 540 [https://github.com/nedbat/coveragepy/issues/540]. This is
now fixed.

	The check for conflicting --source and --include was too simple in a
few different ways, breaking a few perfectly reasonable use cases, described
in issue 541 [https://github.com/nedbat/coveragepy/issues/541]. The check has been reverted while we re-think the fix for
issue 265 [https://github.com/nedbat/coveragepy/issues/265].

Version 4.3 — 2016-12-27

Special thanks to Loïc Dachary, who took an extraordinary interest in
coverage.py and contributed a number of improvements in this release.

	Subprocesses that are measured with automatic subprocess measurement [https://coverage.readthedocs.io/en/latest/subprocess.html] used
to read in any pre-existing data file. This meant data would be incorrectly
carried forward from run to run. Now those files are not read, so each
subprocess only writes its own data. Fixes issue 510 [https://github.com/nedbat/coveragepy/issues/510].

	The coverage combine command will now fail if there are no data files to
combine. The combine changes in 4.2 meant that multiple combines could lose
data, leaving you with an empty .coverage data file. Fixes
issue 525 [https://github.com/nedbat/coveragepy/issues/525], issue 412 [https://github.com/nedbat/coveragepy/issues/412], issue 516 [https://github.com/nedbat/coveragepy/issues/516], and probably issue 511 [https://github.com/nedbat/coveragepy/issues/511].

	Coverage.py wouldn’t execute sys.excepthook [https://docs.python.org/3/library/sys.html#sys.excepthook] when an exception happened in
your program. Now it does, thanks to Andrew Hoos. Closes issue 535 [https://github.com/nedbat/coveragepy/issues/535].

	Branch coverage fixes:

	Branch coverage could misunderstand a finally clause on a try block that
never continued on to the following statement, as described in issue
493 [https://github.com/nedbat/coveragepy/issues/493]. This is now fixed. Thanks to Joe Doherty for the report and Loïc
Dachary for the fix.

	A while loop with a constant condition (while True) and a continue
statement would be mis-analyzed, as described in issue 496 [https://github.com/nedbat/coveragepy/issues/496]. This is now
fixed, thanks to a bug report by Eli Skeggs and a fix by Loïc Dachary.

	While loops with constant conditions that were never executed could result
in a non-zero coverage report. Artem Dayneko reported this in issue
502 [https://github.com/nedbat/coveragepy/issues/502], and Loïc Dachary provided the fix.

	The HTML report now supports a --skip-covered option like the other
reporting commands. Thanks, Loïc Dachary for the implementation, closing
issue 433 [https://github.com/nedbat/coveragepy/issues/433].

	Options can now be read from a tox.ini file, if any. Like setup.cfg, sections
are prefixed with “coverage:”, so [run] options will be read from the
[coverage:run] section of tox.ini. Implements part of issue 519 [https://github.com/nedbat/coveragepy/issues/519].
Thanks, Stephen Finucane.

	Specifying both --source and --include no longer silently ignores the
include setting, instead it fails with a message. Thanks, Nathan Land and
Loïc Dachary. Closes issue 265 [https://github.com/nedbat/coveragepy/issues/265].

	The Coverage.combine method has a new parameter, strict=False, to
support failing if there are no data files to combine.

	When forking subprocesses, the coverage data files would have the same random
number appended to the file name. This didn’t cause problems, because the
file names had the process id also, making collisions (nearly) impossible.
But it was disconcerting. This is now fixed.

	The text report now properly sizes headers when skipping some files, fixing
issue 524 [https://github.com/nedbat/coveragepy/issues/524]. Thanks, Anthony Sottile and Loïc Dachary.

	Coverage.py can now search .pex files for source, just as it can .zip and
.egg. Thanks, Peter Ebden.

	Data files are now about 15% smaller.

	Improvements in the [run] debug setting:

	The “dataio” debug setting now also logs when data files are deleted during
combining or erasing.

	A new debug option, “multiproc”, for logging the behavior of
concurrency=multiprocessing.

	If you used the debug options “config” and “callers” together, you’d get a
call stack printed for every line in the multi-line config output. This is
now fixed.

	Fixed an unusual bug involving multiple coding declarations affecting code
containing code in multi-line strings: issue 529 [https://github.com/nedbat/coveragepy/issues/529].

	Coverage.py will no longer be misled into thinking that a plain file is a
package when interpreting --source options. Thanks, Cosimo Lupo.

	If you try to run a non-Python file with coverage.py, you will now get a more
useful error message. Issue 514 [https://github.com/nedbat/coveragepy/issues/514].

	The default pragma regex changed slightly, but this will only matter to you
if you are deranged and use mixed-case pragmas.

	Deal properly with non-ASCII file names in an ASCII-only world, issue 533 [https://github.com/nedbat/coveragepy/issues/533].

	Programs that set Unicode configuration values could cause UnicodeErrors when
generating HTML reports. Pytest-cov is one example. This is now fixed.

	Prevented deprecation warnings from configparser that happened in some
circumstances, closing issue 530 [https://github.com/nedbat/coveragepy/issues/530].

	Corrected the name of the jquery.ba-throttle-debounce.js library. Thanks,
Ben Finney. Closes issue 505 [https://github.com/nedbat/coveragepy/issues/505].

	Testing against PyPy 5.6 and PyPy3 5.5.

	Switched to pytest from nose for running the coverage.py tests.

	Renamed AUTHORS.txt to CONTRIBUTORS.txt, since there are other ways to
contribute than by writing code. Also put the count of contributors into the
author string in setup.py, though this might be too cute.

Version 4.2 — 2016-07-26

	Since concurrency=multiprocessing uses subprocesses, options specified on
the coverage.py command line will not be communicated down to them. Only
options in the configuration file will apply to the subprocesses.
Previously, the options didn’t apply to the subprocesses, but there was no
indication. Now it is an error to use --concurrency=multiprocessing and
other run-affecting options on the command line. This prevents
failures like those reported in issue 495 [https://github.com/nedbat/coveragepy/issues/495].

	Filtering the HTML report is now faster, thanks to Ville Skyttä.

Version 4.2b1 — 2016-07-04

Work from the PyCon 2016 Sprints!

	BACKWARD INCOMPATIBILITY: the coverage combine command now ignores an
existing .coverage data file. It used to include that file in its
combining. This caused confusing results, and extra tox “clean” steps. If
you want the old behavior, use the new coverage combine --append option.

	The concurrency option can now take multiple values, to support programs
using multiprocessing and another library such as eventlet. This is only
possible in the configuration file, not from the command line. The
configuration file is the only way for sub-processes to all run with the same
options. Fixes issue 484 [https://github.com/nedbat/coveragepy/issues/484]. Thanks to Josh Williams for prototyping.

	Using a concurrency setting of multiprocessing now implies
--parallel so that the main program is measured similarly to the
sub-processes.

	When using automatic subprocess measurement [https://coverage.readthedocs.io/en/latest/subprocess.html], running coverage commands
would create spurious data files. This is now fixed, thanks to diagnosis and
testing by Dan Riti. Closes issue 492 [https://github.com/nedbat/coveragepy/issues/492].

	A new configuration option, report:sort, controls what column of the
text report is used to sort the rows. Thanks to Dan Wandschneider, this
closes issue 199 [https://github.com/nedbat/coveragepy/issues/199].

	The HTML report has a more-visible indicator for which column is being
sorted. Closes issue 298 [https://github.com/nedbat/coveragepy/issues/298], thanks to Josh Williams.

	If the HTML report cannot find the source for a file, the message now
suggests using the -i flag to allow the report to continue. Closes
issue 231 [https://github.com/nedbat/coveragepy/issues/231], thanks, Nathan Land.

	When reports are ignoring errors, there’s now a warning if a file cannot be
parsed, rather than being silently ignored. Closes issue 396 [https://github.com/nedbat/coveragepy/issues/396]. Thanks,
Matthew Boehm.

	A new option for coverage debug is available: coverage debug config
shows the current configuration. Closes issue 454 [https://github.com/nedbat/coveragepy/issues/454], thanks to Matthew
Boehm.

	Running coverage as a module (python -m coverage) no longer shows the
program name as __main__.py. Fixes issue 478 [https://github.com/nedbat/coveragepy/issues/478]. Thanks, Scott Belden.

	The test_helpers module has been moved into a separate pip-installable
package: unittest-mixins [https://pypi.org/project/unittest-mixins/].

Version 4.1 — 2016-05-21

	The internal attribute Reporter.file_reporters was removed in 4.1b3. It
should have come has no surprise that there were third-party tools out there
using that attribute. It has been restored, but with a deprecation warning.

Version 4.1b3 — 2016-05-10

	When running your program, execution can jump from an except X: line to
some other line when an exception other than X happens. This jump is no
longer considered a branch when measuring branch coverage.

	When measuring branch coverage, yield statements that were never resumed
were incorrectly marked as missing, as reported in issue 440 [https://github.com/nedbat/coveragepy/issues/440]. This is now
fixed.

	During branch coverage of single-line callables like lambdas and generator
expressions, coverage.py can now distinguish between them never being called,
or being called but not completed. Fixes issue 90 [https://github.com/nedbat/coveragepy/issues/90], issue 460 [https://github.com/nedbat/coveragepy/issues/460] and
issue 475 [https://github.com/nedbat/coveragepy/issues/475].

	The HTML report now has a map of the file along the rightmost edge of the
page, giving an overview of where the missed lines are. Thanks, Dmitry
Shishov.

	The HTML report now uses different monospaced fonts, favoring Consolas over
Courier. Along the way, issue 472 [https://github.com/nedbat/coveragepy/issues/472] about not properly handling one-space
indents was fixed. The index page also has slightly different styling, to
try to make the clickable detail pages more apparent.

	Missing branches reported with coverage report -m will now say ->exit
for missed branches to the exit of a function, rather than a negative number.
Fixes issue 469 [https://github.com/nedbat/coveragepy/issues/469].

	coverage --help and coverage --version now mention which tracer is
installed, to help diagnose problems. The docs mention which features need
the C extension. (issue 479 [https://github.com/nedbat/coveragepy/issues/479])

	Officially support PyPy 5.1, which required no changes, just updates to the
docs.

	The Coverage.report function had two parameters with non-None defaults,
which have been changed. show_missing used to default to True, but now
defaults to None. If you had been calling Coverage.report without
specifying show_missing, you’ll need to explicitly set it to True to keep
the same behavior. skip_covered used to default to False. It is now None,
which doesn’t change the behavior. This fixes issue 485 [https://github.com/nedbat/coveragepy/issues/485].

	It’s never been possible to pass a namespace module to one of the analysis
functions, but now at least we raise a more specific error message, rather
than getting confused. (issue 456 [https://github.com/nedbat/coveragepy/issues/456])

	The coverage.process_startup function now returns the Coverage instance
it creates, as suggested in issue 481 [https://github.com/nedbat/coveragepy/issues/481].

	Make a small tweak to how we compare threads, to avoid buggy custom
comparison code in thread classes. (issue 245 [https://github.com/nedbat/coveragepy/issues/245])

Version 4.1b2 — 2016-01-23

	Problems with the new branch measurement in 4.1 beta 1 were fixed:

	Class docstrings were considered executable. Now they no longer are.

	yield from and await were considered returns from functions, since
they could transfer control to the caller. This produced unhelpful
“missing branch” reports in a number of circumstances. Now they no longer
are considered returns.

	In unusual situations, a missing branch to a negative number was reported.
This has been fixed, closing issue 466 [https://github.com/nedbat/coveragepy/issues/466].

	The XML report now produces correct package names for modules found in
directories specified with source=. Fixes issue 465 [https://github.com/nedbat/coveragepy/issues/465].

	coverage report won’t produce trailing white space.

Version 4.1b1 — 2016-01-10

	Branch analysis has been rewritten: it used to be based on bytecode, but now
uses AST analysis. This has changed a number of things:

	More code paths are now considered runnable, especially in
try/except structures. This may mean that coverage.py will
identify more code paths as uncovered. This could either raise or lower
your overall coverage number.

	Python 3.5’s async and await keywords are properly supported,
fixing issue 434 [https://github.com/nedbat/coveragepy/issues/434].

	Some long-standing branch coverage bugs were fixed:

	issue 129 [https://github.com/nedbat/coveragepy/issues/129]: functions with only a docstring for a body would
incorrectly report a missing branch on the def line.

	issue 212 [https://github.com/nedbat/coveragepy/issues/212]: code in an except block could be incorrectly marked as
a missing branch.

	issue 146 [https://github.com/nedbat/coveragepy/issues/146]: context managers (with statements) in a loop or try
block could confuse the branch measurement, reporting incorrect partial
branches.

	issue 422 [https://github.com/nedbat/coveragepy/issues/422]: in Python 3.5, an actual partial branch could be marked as
complete.

	Pragmas to disable coverage measurement can now be used on decorator lines,
and they will apply to the entire function or class being decorated. This
implements the feature requested in issue 131 [https://github.com/nedbat/coveragepy/issues/131].

	Multiprocessing support is now available on Windows. Thanks, Rodrigue
Cloutier.

	Files with two encoding declarations are properly supported, fixing
issue 453 [https://github.com/nedbat/coveragepy/issues/453]. Thanks, Max Linke.

	Non-ascii characters in regexes in the configuration file worked in 3.7, but
stopped working in 4.0. Now they work again, closing issue 455 [https://github.com/nedbat/coveragepy/issues/455].

	Form-feed characters would prevent accurate determination of the beginning of
statements in the rest of the file. This is now fixed, closing issue 461 [https://github.com/nedbat/coveragepy/issues/461].

Version 4.0.3 — 2015-11-24

	Fixed a mysterious problem that manifested in different ways: sometimes
hanging the process (issue 420 [https://github.com/nedbat/coveragepy/issues/420]), sometimes making database connections
fail (issue 445 [https://github.com/nedbat/coveragepy/issues/445]).

	The XML report now has correct <source> elements when using a
--source= option somewhere besides the current directory. This fixes
issue 439 [https://github.com/nedbat/coveragepy/issues/439]. Thanks, Arcadiy Ivanov.

	Fixed an unusual edge case of detecting source encodings, described in
issue 443 [https://github.com/nedbat/coveragepy/issues/443].

	Help messages that mention the command to use now properly use the actual
command name, which might be different than “coverage”. Thanks to Ben
Finney, this closes issue 438 [https://github.com/nedbat/coveragepy/issues/438].

Version 4.0.2 — 2015-11-04

	More work on supporting unusually encoded source. Fixed issue 431 [https://github.com/nedbat/coveragepy/issues/431].

	Files or directories with non-ASCII characters are now handled properly,
fixing issue 432 [https://github.com/nedbat/coveragepy/issues/432].

	Setting a trace function with sys.settrace was broken by a change in 4.0.1,
as reported in issue 436 [https://github.com/nedbat/coveragepy/issues/436]. This is now fixed.

	Officially support PyPy 4.0, which required no changes, just updates to the
docs.

Version 4.0.1 — 2015-10-13

	When combining data files, unreadable files will now generate a warning
instead of failing the command. This is more in line with the older
coverage.py v3.7.1 behavior, which silently ignored unreadable files.
Prompted by issue 418 [https://github.com/nedbat/coveragepy/issues/418].

	The –skip-covered option would skip reporting on 100% covered files, but
also skipped them when calculating total coverage. This was wrong, it should
only remove lines from the report, not change the final answer. This is now
fixed, closing issue 423 [https://github.com/nedbat/coveragepy/issues/423].

	In 4.0, the data file recorded a summary of the system on which it was run.
Combined data files would keep all of those summaries. This could lead to
enormous data files consisting of mostly repetitive useless information. That
summary is now gone, fixing issue 415 [https://github.com/nedbat/coveragepy/issues/415]. If you want summary information,
get in touch, and we’ll figure out a better way to do it.

	Test suites that mocked os.path.exists would experience strange failures, due
to coverage.py using their mock inadvertently. This is now fixed, closing
issue 416 [https://github.com/nedbat/coveragepy/issues/416].

	Importing a __init__ module explicitly would lead to an error:
AttributeError: 'module' object has no attribute '__path__', as reported
in issue 410 [https://github.com/nedbat/coveragepy/issues/410]. This is now fixed.

	Code that uses sys.settrace(sys.gettrace()) used to incur a more than 2x
speed penalty. Now there’s no penalty at all. Fixes issue 397 [https://github.com/nedbat/coveragepy/issues/397].

	Pyexpat C code will no longer be recorded as a source file, fixing
issue 419 [https://github.com/nedbat/coveragepy/issues/419].

	The source kit now contains all of the files needed to have a complete source
tree, re-fixing issue 137 [https://github.com/nedbat/coveragepy/issues/137] and closing issue 281 [https://github.com/nedbat/coveragepy/issues/281].

Version 4.0 — 2015-09-20

No changes from 4.0b3

Version 4.0b3 — 2015-09-07

	Reporting on an unmeasured file would fail with a traceback. This is now
fixed, closing issue 403 [https://github.com/nedbat/coveragepy/issues/403].

	The Jenkins ShiningPanda [https://plugins.jenkins.io/shiningpanda/] plugin looks for an obsolete file name to find the
HTML reports to publish, so it was failing under coverage.py 4.0. Now we
create that file if we are running under Jenkins, to keep things working
smoothly. issue 404 [https://github.com/nedbat/coveragepy/issues/404].

	Kits used to include tests and docs, but didn’t install them anywhere, or
provide all of the supporting tools to make them useful. Kits no longer
include tests and docs. If you were using them from the older packages, get
in touch and help me understand how.

Version 4.0b2 — 2015-08-22

	4.0b1 broke --append creating new data files. This is now fixed, closing
issue 392 [https://github.com/nedbat/coveragepy/issues/392].

	py.test --cov can write empty data, then touch files due to --source,
which made coverage.py mistakenly force the data file to record lines instead
of arcs. This would lead to a “Can’t combine line data with arc data” error
message. This is now fixed, and changed some method names in the
CoverageData interface. Fixes issue 399 [https://github.com/nedbat/coveragepy/issues/399].

	CoverageData.read_fileobj and CoverageData.write_fileobj replace the
.read and .write methods, and are now properly inverses of each other.

	When using report --skip-covered, a message will now be included in the
report output indicating how many files were skipped, and if all files are
skipped, coverage.py won’t accidentally scold you for having no data to
report. Thanks, Krystian Kichewko.

	A new conversion utility has been added: python -m coverage.pickle2json
will convert v3.x pickle data files to v4.x JSON data files. Thanks,
Alexander Todorov. Closes issue 395 [https://github.com/nedbat/coveragepy/issues/395].

	A new version identifier is available, coverage.version_info, a plain tuple
of values similar to sys.version_info [https://docs.python.org/3/library/sys.html#sys.version_info].

Version 4.0b1 — 2015-08-02

	Coverage.py is now licensed under the Apache 2.0 license. See NOTICE.txt for
details. Closes issue 313 [https://github.com/nedbat/coveragepy/issues/313].

	The data storage has been completely revamped. The data file is now
JSON-based instead of a pickle, closing issue 236 [https://github.com/nedbat/coveragepy/issues/236]. The CoverageData
class is now a public supported documented API to the data file.

	A new configuration option, [run] note, lets you set a note that will be
stored in the runs section of the data file. You can use this to annotate
the data file with any information you like.

	Unrecognized configuration options will now print an error message and stop
coverage.py. This should help prevent configuration mistakes from passing
silently. Finishes issue 386 [https://github.com/nedbat/coveragepy/issues/386].

	In parallel mode, coverage erase will now delete all of the data files,
fixing issue 262 [https://github.com/nedbat/coveragepy/issues/262].

	Coverage.py now accepts a directory name for coverage run and will run a
__main__.py found there, just like Python will. Fixes issue 252 [https://github.com/nedbat/coveragepy/issues/252].
Thanks, Dmitry Trofimov.

	The XML report now includes a missing-branches attribute. Thanks, Steve
Peak. This is not a part of the Cobertura DTD, so the XML report no longer
references the DTD.

	Missing branches in the HTML report now have a bit more information in the
right-hand annotations. Hopefully this will make their meaning clearer.

	All the reporting functions now behave the same if no data had been
collected, exiting with a status code of 1. Fixed fail_under to be
applied even when the report is empty. Thanks, Ionel Cristian Mărieș.

	Plugins are now initialized differently. Instead of looking for a class
called Plugin, coverage.py looks for a function called coverage_init.

	A file-tracing plugin can now ask to have built-in Python reporting by
returning “python” from its file_reporter() method.

	Code that was executed with exec would be mis-attributed to the file that
called it. This is now fixed, closing issue 380 [https://github.com/nedbat/coveragepy/issues/380].

	The ability to use item access on Coverage.config (introduced in 4.0a2) has
been changed to a more explicit Coverage.get_option and
Coverage.set_option API.

	The Coverage.use_cache method is no longer supported.

	The private method Coverage._harvest_data is now called
Coverage.get_data, and returns the CoverageData containing the
collected data.

	The project is consistently referred to as “coverage.py” throughout the code
and the documentation, closing issue 275 [https://github.com/nedbat/coveragepy/issues/275].

	Combining data files with an explicit configuration file was broken in 4.0a6,
but now works again, closing issue 385 [https://github.com/nedbat/coveragepy/issues/385].

	coverage combine now accepts files as well as directories.

	The speed is back to 3.7.1 levels, after having slowed down due to plugin
support, finishing up issue 387 [https://github.com/nedbat/coveragepy/issues/387].

Version 4.0a6 — 2015-06-21

	Python 3.5b2 and PyPy 2.6.0 are supported.

	The original module-level function interface to coverage.py is no longer
supported. You must now create a coverage.Coverage object, and use
methods on it.

	The coverage combine command now accepts any number of directories as
arguments, and will combine all the data files from those directories. This
means you don’t have to copy the files to one directory before combining.
Thanks, Christine Lytwynec. Finishes issue 354 [https://github.com/nedbat/coveragepy/issues/354].

	Branch coverage couldn’t properly handle certain extremely long files. This
is now fixed (issue 359 [https://github.com/nedbat/coveragepy/issues/359]).

	Branch coverage didn’t understand yield statements properly. Mickie Betz
persisted in pursuing this despite Ned’s pessimism. Fixes issue 308 [https://github.com/nedbat/coveragepy/issues/308] and
issue 324 [https://github.com/nedbat/coveragepy/issues/324].

	The COVERAGE_DEBUG environment variable can be used to set the
[run] debug configuration option to control what internal operations are
logged.

	HTML reports were truncated at formfeed characters. This is now fixed
(issue 360 [https://github.com/nedbat/coveragepy/issues/360]). It’s always fun when the problem is due to a bug in the
Python standard library [http://bugs.python.org/issue19035].

	Files with incorrect encoding declaration comments are no longer ignored by
the reporting commands, fixing issue 351 [https://github.com/nedbat/coveragepy/issues/351].

	HTML reports now include a time stamp in the footer, closing issue 299 [https://github.com/nedbat/coveragepy/issues/299].
Thanks, Conrad Ho.

	HTML reports now begrudgingly use double-quotes rather than single quotes,
because there are “software engineers” out there writing tools that read HTML
and somehow have no idea that single quotes exist. Capitulates to the absurd
issue 361 [https://github.com/nedbat/coveragepy/issues/361]. Thanks, Jon Chappell.

	The coverage annotate command now handles non-ASCII characters properly,
closing issue 363 [https://github.com/nedbat/coveragepy/issues/363]. Thanks, Leonardo Pistone.

	Drive letters on Windows were not normalized correctly, now they are. Thanks,
Ionel Cristian Mărieș.

	Plugin support had some bugs fixed, closing issue 374 [https://github.com/nedbat/coveragepy/issues/374] and issue 375 [https://github.com/nedbat/coveragepy/issues/375].
Thanks, Stefan Behnel.

Version 4.0a5 — 2015-02-16

	Plugin support is now implemented in the C tracer instead of the Python
tracer. This greatly improves the speed of tracing projects using plugins.

	Coverage.py now always adds the current directory to sys.path, so that
plugins can import files in the current directory (issue 358 [https://github.com/nedbat/coveragepy/issues/358]).

	If the config_file argument to the Coverage constructor is specified as
“.coveragerc”, it is treated as if it were True. This means setup.cfg is
also examined, and a missing file is not considered an error (issue 357 [https://github.com/nedbat/coveragepy/issues/357]).

	Wildly experimental: support for measuring processes started by the
multiprocessing module. To use, set --concurrency=multiprocessing,
either on the command line or in the .coveragerc file (issue 117 [https://github.com/nedbat/coveragepy/issues/117]). Thanks,
Eduardo Schettino. Currently, this does not work on Windows.

	A new warning is possible, if a desired file isn’t measured because it was
imported before coverage.py was started (issue 353 [https://github.com/nedbat/coveragepy/issues/353]).

	The coverage.process_startup function now will start coverage measurement
only once, no matter how many times it is called. This fixes problems due
to unusual virtualenv configurations (issue 340 [https://github.com/nedbat/coveragepy/issues/340]).

	Added 3.5.0a1 to the list of supported CPython versions.

Version 4.0a4 — 2015-01-25

	Plugins can now provide sys_info for debugging output.

	Started plugins documentation.

	Prepared to move the docs to readthedocs.org.

Version 4.0a3 — 2015-01-20

	Reports now use file names with extensions. Previously, a report would
describe a/b/c.py as “a/b/c”. Now it is shown as “a/b/c.py”. This allows
for better support of non-Python files, and also fixed issue 69 [https://github.com/nedbat/coveragepy/issues/69].

	The XML report now reports each directory as a package again. This was a bad
regression, I apologize. This was reported in issue 235 [https://github.com/nedbat/coveragepy/issues/235], which is now
fixed.

	A new configuration option for the XML report: [xml] package_depth
controls which directories are identified as packages in the report.
Directories deeper than this depth are not reported as packages.
The default is that all directories are reported as packages.
Thanks, Lex Berezhny.

	When looking for the source for a frame, check if the file exists. On
Windows, .pyw files are no longer recorded as .py files. Along the way, this
fixed issue 290 [https://github.com/nedbat/coveragepy/issues/290].

	Empty files are now reported as 100% covered in the XML report, not 0%
covered (issue 345 [https://github.com/nedbat/coveragepy/issues/345]).

	Regexes in the configuration file are now compiled as soon as they are read,
to provide error messages earlier (issue 349 [https://github.com/nedbat/coveragepy/issues/349]).

Version 4.0a2 — 2015-01-14

	Officially support PyPy 2.4, and PyPy3 2.4. Drop support for
CPython 3.2 and older versions of PyPy. The code won’t work on CPython 3.2.
It will probably still work on older versions of PyPy, but I’m not testing
against them.

	Plugins!

	The original command line switches (-x to run a program, etc) are no
longer supported.

	A new option: coverage report –skip-covered will reduce the number of
files reported by skipping files with 100% coverage. Thanks, Krystian
Kichewko. This means that empty __init__.py files will be skipped, since
they are 100% covered, closing issue 315 [https://github.com/nedbat/coveragepy/issues/315].

	You can now specify the --fail-under option in the .coveragerc file
as the [report] fail_under option. This closes issue 314 [https://github.com/nedbat/coveragepy/issues/314].

	The COVERAGE_OPTIONS environment variable is no longer supported. It was
a hack for --timid before configuration files were available.

	The HTML report now has filtering. Type text into the Filter box on the
index page, and only modules with that text in the name will be shown.
Thanks, Danny Allen.

	The textual report and the HTML report used to report partial branches
differently for no good reason. Now the text report’s “missing branches”
column is a “partial branches” column so that both reports show the same
numbers. This closes issue 342 [https://github.com/nedbat/coveragepy/issues/342].

	If you specify a --rcfile that cannot be read, you will get an error
message. Fixes issue 343 [https://github.com/nedbat/coveragepy/issues/343].

	The --debug switch can now be used on any command.

	You can now programmatically adjust the configuration of coverage.py by
setting items on Coverage.config after construction.

	A module run with -m can be used as the argument to --source, fixing
issue 328 [https://github.com/nedbat/coveragepy/issues/328]. Thanks, Buck Evan.

	The regex for matching exclusion pragmas has been fixed to allow more kinds
of white space, fixing issue 334 [https://github.com/nedbat/coveragepy/issues/334].

	Made some PyPy-specific tweaks to improve speed under PyPy. Thanks, Alex
Gaynor.

	In some cases, with a source file missing a final newline, coverage.py would
count statements incorrectly. This is now fixed, closing issue 293 [https://github.com/nedbat/coveragepy/issues/293].

	The status.dat file that HTML reports use to avoid re-creating files that
haven’t changed is now a JSON file instead of a pickle file. This obviates
issue 287 [https://github.com/nedbat/coveragepy/issues/287] and issue 237 [https://github.com/nedbat/coveragepy/issues/237].

Version 4.0a1 — 2014-09-27

	Python versions supported are now CPython 2.6, 2.7, 3.2, 3.3, and 3.4, and
PyPy 2.2.

	Gevent, eventlet, and greenlet are now supported, closing issue 149 [https://github.com/nedbat/coveragepy/issues/149].
The concurrency setting specifies the concurrency library in use. Huge
thanks to Peter Portante for initial implementation, and to Joe Jevnik for
the final insight that completed the work.

	Options are now also read from a setup.cfg file, if any. Sections are
prefixed with “coverage:”, so the [run] options will be read from the
[coverage:run] section of setup.cfg. Finishes issue 304 [https://github.com/nedbat/coveragepy/issues/304].

	The report -m command can now show missing branches when reporting on
branch coverage. Thanks, Steve Leonard. Closes issue 230 [https://github.com/nedbat/coveragepy/issues/230].

	The XML report now contains a <source> element, fixing issue 94 [https://github.com/nedbat/coveragepy/issues/94]. Thanks
Stan Hu.

	The class defined in the coverage module is now called Coverage instead
of coverage, though the old name still works, for backward compatibility.

	The fail-under value is now rounded the same as reported results,
preventing paradoxical results, fixing issue 284 [https://github.com/nedbat/coveragepy/issues/284].

	The XML report will now create the output directory if need be, fixing
issue 285 [https://github.com/nedbat/coveragepy/issues/285]. Thanks, Chris Rose.

	HTML reports no longer raise UnicodeDecodeError if a Python file has
un-decodable characters, fixing issue 303 [https://github.com/nedbat/coveragepy/issues/303] and issue 331 [https://github.com/nedbat/coveragepy/issues/331].

	The annotate command will now annotate all files, not just ones relative to
the current directory, fixing issue 57 [https://github.com/nedbat/coveragepy/issues/57].

	The coverage module no longer causes deprecation warnings on Python 3.4 by
importing the imp module, fixing issue 305 [https://github.com/nedbat/coveragepy/issues/305].

	Encoding declarations in source files are only considered if they are truly
comments. Thanks, Anthony Sottile.

Version 3.7.1 — 2013-12-13

	Improved the speed of HTML report generation by about 20%.

	Fixed the mechanism for finding OS-installed static files for the HTML report
so that it will actually find OS-installed static files.

Version 3.7 — 2013-10-06

	Added the --debug switch to coverage run. It accepts a list of
options indicating the type of internal activity to log to stderr.

	Improved the branch coverage facility, fixing issue 92 [https://github.com/nedbat/coveragepy/issues/92] and issue 175 [https://github.com/nedbat/coveragepy/issues/175].

	Running code with coverage run -m now behaves more like Python does,
setting sys.path properly, which fixes issue 207 [https://github.com/nedbat/coveragepy/issues/207] and issue 242 [https://github.com/nedbat/coveragepy/issues/242].

	Coverage.py can now run .pyc files directly, closing issue 264 [https://github.com/nedbat/coveragepy/issues/264].

	Coverage.py properly supports .pyw files, fixing issue 261 [https://github.com/nedbat/coveragepy/issues/261].

	Omitting files within a tree specified with the source option would
cause them to be incorrectly marked as un-executed, as described in
issue 218 [https://github.com/nedbat/coveragepy/issues/218]. This is now fixed.

	When specifying paths to alias together during data combining, you can now
specify relative paths, fixing issue 267 [https://github.com/nedbat/coveragepy/issues/267].

	Most file paths can now be specified with username expansion (~/src, or
~build/src, for example), and with environment variable expansion
(build/$BUILDNUM/src).

	Trying to create an XML report with no files to report on, would cause a
ZeroDivisionError, but no longer does, fixing issue 250 [https://github.com/nedbat/coveragepy/issues/250].

	When running a threaded program under the Python tracer, coverage.py no
longer issues a spurious warning about the trace function changing: “Trace
function changed, measurement is likely wrong: None.” This fixes issue
164 [https://github.com/nedbat/coveragepy/issues/164].

	Static files necessary for HTML reports are found in system-installed places,
to ease OS-level packaging of coverage.py. Closes issue 259 [https://github.com/nedbat/coveragepy/issues/259].

	Source files with encoding declarations, but a blank first line, were not
decoded properly. Now they are. Thanks, Roger Hu.

	The source kit now includes the __main__.py file in the root coverage
directory, fixing issue 255 [https://github.com/nedbat/coveragepy/issues/255].

Version 3.6 — 2013-01-05

	Added a page to the docs about troublesome situations, closing issue 226 [https://github.com/nedbat/coveragepy/issues/226],
and added some info to the TODO file, closing issue 227 [https://github.com/nedbat/coveragepy/issues/227].

Version 3.6b3 — 2012-12-29

	Beta 2 broke the nose plugin. It’s fixed again, closing issue 224 [https://github.com/nedbat/coveragepy/issues/224].

Version 3.6b2 — 2012-12-23

	Coverage.py runs on Python 2.3 and 2.4 again. It was broken in 3.6b1.

	The C extension is optionally compiled using a different more widely-used
technique, taking another stab at fixing issue 80 [https://github.com/nedbat/coveragepy/issues/80] once and for all.

	Combining data files would create entries for phantom files if used with
source and path aliases. It no longer does.

	debug sys now shows the configuration file path that was read.

	If an oddly-behaved package claims that code came from an empty-string
file name, coverage.py no longer associates it with the directory name,
fixing issue 221 [https://github.com/nedbat/coveragepy/issues/221].

Version 3.6b1 — 2012-11-28

	Wildcards in include= and omit= arguments were not handled properly
in reporting functions, though they were when running. Now they are handled
uniformly, closing issue 143 [https://github.com/nedbat/coveragepy/issues/143] and issue 163 [https://github.com/nedbat/coveragepy/issues/163]. NOTE: it is possible
that your configurations may now be incorrect. If you use include or
omit during reporting, whether on the command line, through the API, or
in a configuration file, please check carefully that you were not relying on
the old broken behavior.

	The report, html, and xml commands now accept a --fail-under
switch that indicates in the exit status whether the coverage percentage was
less than a particular value. Closes issue 139 [https://github.com/nedbat/coveragepy/issues/139].

	The reporting functions coverage.report(), coverage.html_report(), and
coverage.xml_report() now all return a float, the total percentage covered
measurement.

	The HTML report’s title can now be set in the configuration file, with the
--title switch on the command line, or via the API.

	Configuration files now support substitution of environment variables, using
syntax like ${WORD}. Closes issue 97 [https://github.com/nedbat/coveragepy/issues/97].

	Embarrassingly, the [xml] output= setting in the .coveragerc file simply
didn’t work. Now it does.

	The XML report now consistently uses file names for the file name attribute,
rather than sometimes using module names. Fixes issue 67 [https://github.com/nedbat/coveragepy/issues/67].
Thanks, Marcus Cobden.

	Coverage percentage metrics are now computed slightly differently under
branch coverage. This means that completely un-executed files will now
correctly have 0% coverage, fixing issue 156 [https://github.com/nedbat/coveragepy/issues/156]. This also means that your
total coverage numbers will generally now be lower if you are measuring
branch coverage.

	When installing, now in addition to creating a “coverage” command, two new
aliases are also installed. A “coverage2” or “coverage3” command will be
created, depending on whether you are installing in Python 2.x or 3.x.
A “coverage-X.Y” command will also be created corresponding to your specific
version of Python. Closes issue 111 [https://github.com/nedbat/coveragepy/issues/111].

	The coverage.py installer no longer tries to bootstrap setuptools or
Distribute. You must have one of them installed first, as issue 202 [https://github.com/nedbat/coveragepy/issues/202]
recommended.

	The coverage.py kit now includes docs (closing issue 137 [https://github.com/nedbat/coveragepy/issues/137]) and tests.

	On Windows, files are now reported in their correct case, fixing issue 89 [https://github.com/nedbat/coveragepy/issues/89]
and issue 203 [https://github.com/nedbat/coveragepy/issues/203].

	If a file is missing during reporting, the path shown in the error message
is now correct, rather than an incorrect path in the current directory.
Fixes issue 60 [https://github.com/nedbat/coveragepy/issues/60].

	Running an HTML report in Python 3 in the same directory as an old Python 2
HTML report would fail with a UnicodeDecodeError. This issue (issue 193 [https://github.com/nedbat/coveragepy/issues/193])
is now fixed.

	Fixed yet another error trying to parse non-Python files as Python, this
time an IndentationError, closing issue 82 [https://github.com/nedbat/coveragepy/issues/82] for the fourth time…

	If coverage xml fails because there is no data to report, it used to
create a zero-length XML file. Now it doesn’t, fixing issue 210 [https://github.com/nedbat/coveragepy/issues/210].

	Jython files now work with the --source option, fixing issue 100 [https://github.com/nedbat/coveragepy/issues/100].

	Running coverage.py under a debugger is unlikely to work, but it shouldn’t
fail with “TypeError: ‘NoneType’ object is not iterable”. Fixes issue
201 [https://github.com/nedbat/coveragepy/issues/201].

	On some Linux distributions, when installed with the OS package manager,
coverage.py would report its own code as part of the results. Now it won’t,
fixing issue 214 [https://github.com/nedbat/coveragepy/issues/214], though this will take some time to be repackaged by the
operating systems.

	Docstrings for the legacy singleton methods are more helpful. Thanks Marius
Gedminas. Closes issue 205 [https://github.com/nedbat/coveragepy/issues/205].

	The pydoc tool can now show documentation for the class coverage.coverage.
Closes issue 206 [https://github.com/nedbat/coveragepy/issues/206].

	Added a page to the docs about contributing to coverage.py, closing
issue 171 [https://github.com/nedbat/coveragepy/issues/171].

	When coverage.py ended unsuccessfully, it may have reported odd errors like
'NoneType' object has no attribute 'isabs'. It no longer does,
so kiss issue 153 [https://github.com/nedbat/coveragepy/issues/153] goodbye.

Version 3.5.3 — 2012-09-29

	Line numbers in the HTML report line up better with the source lines, fixing
issue 197 [https://github.com/nedbat/coveragepy/issues/197], thanks Marius Gedminas.

	When specifying a directory as the source= option, the directory itself no
longer needs to have a __init__.py file, though its sub-directories do,
to be considered as source files.

	Files encoded as UTF-8 with a BOM are now properly handled, fixing
issue 179 [https://github.com/nedbat/coveragepy/issues/179]. Thanks, Pablo Carballo.

	Fixed more cases of non-Python files being reported as Python source, and
then not being able to parse them as Python. Closes issue 82 [https://github.com/nedbat/coveragepy/issues/82] (again).
Thanks, Julian Berman.

	Fixed memory leaks under Python 3, thanks, Brett Cannon. Closes issue 147 [https://github.com/nedbat/coveragepy/issues/147].

	Optimized .pyo files may not have been handled correctly, issue 195 [https://github.com/nedbat/coveragepy/issues/195].
Thanks, Marius Gedminas.

	Certain unusually named file paths could have been mangled during reporting,
issue 194 [https://github.com/nedbat/coveragepy/issues/194]. Thanks, Marius Gedminas.

	Try to do a better job of the impossible task of detecting when we can’t
build the C extension, fixing issue 183 [https://github.com/nedbat/coveragepy/issues/183].

	Testing is now done with tox [https://tox.readthedocs.io/], thanks, Marc Abramowitz.

Version 3.5.2 — 2012-05-04

No changes since 3.5.2.b1

Version 3.5.2b1 — 2012-04-29

	The HTML report has slightly tweaked controls: the buttons at the top of
the page are color-coded to the source lines they affect.

	Custom CSS can be applied to the HTML report by specifying a CSS file as
the extra_css configuration value in the [html] section.

	Source files with custom encodings declared in a comment at the top are now
properly handled during reporting on Python 2. Python 3 always handled them
properly. This fixes issue 157 [https://github.com/nedbat/coveragepy/issues/157].

	Backup files left behind by editors are no longer collected by the source=
option, fixing issue 168 [https://github.com/nedbat/coveragepy/issues/168].

	If a file doesn’t parse properly as Python, we don’t report it as an error
if the file name seems like maybe it wasn’t meant to be Python. This is a
pragmatic fix for issue 82 [https://github.com/nedbat/coveragepy/issues/82].

	The -m switch on coverage report, which includes missing line numbers
in the summary report, can now be specified as show_missing in the
config file. Closes issue 173 [https://github.com/nedbat/coveragepy/issues/173].

	When running a module with coverage run -m <modulename>, certain details
of the execution environment weren’t the same as for
python -m <modulename>. This had the unfortunate side-effect of making
coverage run -m unittest discover not work if you had tests in a
directory named “test”. This fixes issue 155 [https://github.com/nedbat/coveragepy/issues/155] and issue 142 [https://github.com/nedbat/coveragepy/issues/142].

	Now the exit status of your product code is properly used as the process
status when running python -m coverage run Thanks, JT Olds.

	When installing into PyPy, we no longer attempt (and fail) to compile
the C tracer function, closing issue 166 [https://github.com/nedbat/coveragepy/issues/166].

Version 3.5.1 — 2011-09-23

	The [paths] feature unfortunately didn’t work in real world situations
where you wanted to, you know, report on the combined data. Now all paths
stored in the combined file are canonicalized properly.

Version 3.5.1b1 — 2011-08-28

	When combining data files from parallel runs, you can now instruct
coverage.py about which directories are equivalent on different machines. A
[paths] section in the configuration file lists paths that are to be
considered equivalent. Finishes issue 17 [https://github.com/nedbat/coveragepy/issues/17].

	for-else constructs are understood better, and don’t cause erroneous partial
branch warnings. Fixes issue 122 [https://github.com/nedbat/coveragepy/issues/122].

	Branch coverage for with statements is improved, fixing issue 128 [https://github.com/nedbat/coveragepy/issues/128].

	The number of partial branches reported on the HTML summary page was
different than the number reported on the individual file pages. This is
now fixed.

	An explicit include directive to measure files in the Python installation
wouldn’t work because of the standard library exclusion. Now the include
directive takes precedence, and the files will be measured. Fixes
issue 138 [https://github.com/nedbat/coveragepy/issues/138].

	The HTML report now handles Unicode characters in Python source files
properly. This fixes issue 124 [https://github.com/nedbat/coveragepy/issues/124] and issue 144 [https://github.com/nedbat/coveragepy/issues/144]. Thanks, Devin
Jeanpierre.

	In order to help the core developers measure the test coverage of the
standard library, Brandon Rhodes devised an aggressive hack to trick Python
into running some coverage.py code before anything else in the process.
See the coverage/fullcoverage directory if you are interested.

Version 3.5 — 2011-06-29

	The HTML report hotkeys now behave slightly differently when the current
chunk isn’t visible at all: a chunk on the screen will be selected,
instead of the old behavior of jumping to the literal next chunk.
The hotkeys now work in Google Chrome. Thanks, Guido van Rossum.

Version 3.5b1 — 2011-06-05

	The HTML report now has hotkeys. Try n, s, m, x, b,
p, and c on the overview page to change the column sorting.
On a file page, r, m, x, and p toggle the run, missing,
excluded, and partial line markings. You can navigate the highlighted
sections of code by using the j and k keys for next and previous.
The 1 (one) key jumps to the first highlighted section in the file,
and 0 (zero) scrolls to the top of the file.

	The --omit and --include switches now interpret their values more
usefully. If the value starts with a wildcard character, it is used as-is.
If it does not, it is interpreted relative to the current directory.
Closes issue 121 [https://github.com/nedbat/coveragepy/issues/121].

	Partial branch warnings can now be pragma’d away. The configuration option
partial_branches is a list of regular expressions. Lines matching any of
those expressions will never be marked as a partial branch. In addition,
there’s a built-in list of regular expressions marking statements which
should never be marked as partial. This list includes while True:,
while 1:, if 1:, and if 0:.

	The coverage() constructor accepts single strings for the omit= and
include= arguments, adapting to a common error in programmatic use.

	Modules can now be run directly using coverage run -m modulename, to
mirror Python’s -m flag. Closes issue 95 [https://github.com/nedbat/coveragepy/issues/95], thanks, Brandon Rhodes.

	coverage run didn’t emulate Python accurately in one small detail: the
current directory inserted into sys.path was relative rather than
absolute. This is now fixed.

	HTML reporting is now incremental: a record is kept of the data that
produced the HTML reports, and only files whose data has changed will
be generated. This should make most HTML reporting faster.

	Pathological code execution could disable the trace function behind our
backs, leading to incorrect code measurement. Now if this happens,
coverage.py will issue a warning, at least alerting you to the problem.
Closes issue 93 [https://github.com/nedbat/coveragepy/issues/93]. Thanks to Marius Gedminas for the idea.

	The C-based trace function now behaves properly when saved and restored
with sys.gettrace() and sys.settrace(). This fixes issue 125 [https://github.com/nedbat/coveragepy/issues/125]
and issue 123 [https://github.com/nedbat/coveragepy/issues/123]. Thanks, Devin Jeanpierre.

	Source files are now opened with Python 3.2’s tokenize.open() where
possible, to get the best handling of Python source files with encodings.
Closes issue 107 [https://github.com/nedbat/coveragepy/issues/107], thanks, Brett Cannon.

	Syntax errors in supposed Python files can now be ignored during reporting
with the -i switch just like other source errors. Closes issue 115 [https://github.com/nedbat/coveragepy/issues/115].

	Installation from source now succeeds on machines without a C compiler,
closing issue 80 [https://github.com/nedbat/coveragepy/issues/80].

	Coverage.py can now be run directly from a working tree by specifying
the directory name to python: python coverage_py_working_dir run
Thanks, Brett Cannon.

	A little bit of Jython support: coverage run can now measure Jython
execution by adapting when $py.class files are traced. Thanks, Adi Roiban.
Jython still doesn’t provide the Python libraries needed to make
coverage reporting work, unfortunately.

	Internally, files are now closed explicitly, fixing issue 104 [https://github.com/nedbat/coveragepy/issues/104]. Thanks,
Brett Cannon.

Version 3.4 — 2010-09-19

	The XML report is now sorted by package name, fixing issue 88 [https://github.com/nedbat/coveragepy/issues/88].

	Programs that exited with sys.exit() with no argument weren’t handled
properly, producing a coverage.py stack trace. That is now fixed.

Version 3.4b2 — 2010-09-06

	Completely un-executed files can now be included in coverage results,
reported as 0% covered. This only happens if the –source option is
specified, since coverage.py needs guidance about where to look for source
files.

	The XML report output now properly includes a percentage for branch coverage,
fixing issue 65 [https://github.com/nedbat/coveragepy/issues/65] and issue 81 [https://github.com/nedbat/coveragepy/issues/81].

	Coverage percentages are now displayed uniformly across reporting methods.
Previously, different reports could round percentages differently. Also,
percentages are only reported as 0% or 100% if they are truly 0 or 100, and
are rounded otherwise. Fixes issue 41 [https://github.com/nedbat/coveragepy/issues/41] and issue 70 [https://github.com/nedbat/coveragepy/issues/70].

	The precision of reported coverage percentages can be set with the
[report] precision config file setting. Completes issue 16 [https://github.com/nedbat/coveragepy/issues/16].

	Threads derived from threading.Thread with an overridden run method
would report no coverage for the run method. This is now fixed, closing
issue 85 [https://github.com/nedbat/coveragepy/issues/85].

Version 3.4b1 — 2010-08-21

	BACKWARD INCOMPATIBILITY: the --omit and --include switches now take
file patterns rather than file prefixes, closing issue 34 [https://github.com/nedbat/coveragepy/issues/34] and issue 36 [https://github.com/nedbat/coveragepy/issues/36].

	BACKWARD INCOMPATIBILITY: the omit_prefixes argument is gone throughout
coverage.py, replaced with omit, a list of file name patterns suitable for
fnmatch. A parallel argument include controls what files are included.

	The run command now has a --source switch, a list of directories or
module names. If provided, coverage.py will only measure execution in those
source files.

	Various warnings are printed to stderr for problems encountered during data
measurement: if a --source module has no Python source to measure, or is
never encountered at all, or if no data is collected.

	The reporting commands (report, annotate, html, and xml) now have an
--include switch to restrict reporting to modules matching those file
patterns, similar to the existing --omit switch. Thanks, Zooko.

	The run command now supports --include and --omit to control what
modules it measures. This can speed execution and reduce the amount of data
during reporting. Thanks Zooko.

	Since coverage.py 3.1, using the Python trace function has been slower than
it needs to be. A cache of tracing decisions was broken, but has now been
fixed.

	Python 2.7 and 3.2 have introduced new opcodes that are now supported.

	Python files with no statements, for example, empty __init__.py files,
are now reported as having zero statements instead of one. Fixes issue 1 [https://github.com/nedbat/coveragepy/issues/1].

	Reports now have a column of missed line counts rather than executed line
counts, since developers should focus on reducing the missed lines to zero,
rather than increasing the executed lines to varying targets. Once
suggested, this seemed blindingly obvious.

	Line numbers in HTML source pages are clickable, linking directly to that
line, which is highlighted on arrival. Added a link back to the index page
at the bottom of each HTML page.

	Programs that call os.fork will properly collect data from both the child
and parent processes. Use coverage run -p to get two data files that can
be combined with coverage combine. Fixes issue 56 [https://github.com/nedbat/coveragepy/issues/56].

	Coverage.py is now runnable as a module: python -m coverage. Thanks,
Brett Cannon.

	When measuring code running in a virtualenv, most of the system library was
being measured when it shouldn’t have been. This is now fixed.

	Doctest text files are no longer recorded in the coverage data, since they
can’t be reported anyway. Fixes issue 52 [https://github.com/nedbat/coveragepy/issues/52] and issue 61 [https://github.com/nedbat/coveragepy/issues/61].

	Jinja HTML templates compile into Python code using the HTML file name,
which confused coverage.py. Now these files are no longer traced, fixing
issue 82 [https://github.com/nedbat/coveragepy/issues/82].

	Source files can have more than one dot in them (foo.test.py), and will be
treated properly while reporting. Fixes issue 46 [https://github.com/nedbat/coveragepy/issues/46].

	Source files with DOS line endings are now properly tokenized for syntax
coloring on non-DOS machines. Fixes issue 53 [https://github.com/nedbat/coveragepy/issues/53].

	Unusual code structure that confused exits from methods with exits from
classes is now properly analyzed. See issue 62 [https://github.com/nedbat/coveragepy/issues/62].

	Asking for an HTML report with no files now shows a nice error message rather
than a cryptic failure (‘int’ object is unsubscriptable). Fixes issue 59 [https://github.com/nedbat/coveragepy/issues/59].

Version 3.3.1 — 2010-03-06

	Using parallel=True in .coveragerc file prevented reporting, but now does
not, fixing issue 49 [https://github.com/nedbat/coveragepy/issues/49].

	When running your code with “coverage run”, if you call sys.exit(),
coverage.py will exit with that status code, fixing issue 50 [https://github.com/nedbat/coveragepy/issues/50].

Version 3.3 — 2010-02-24

	Settings are now read from a .coveragerc file. A specific file can be
specified on the command line with –rcfile=FILE. The name of the file can
be programmatically set with the config_file argument to the coverage()
constructor, or reading a config file can be disabled with
config_file=False.

	Fixed a problem with nested loops having their branch possibilities
mis-characterized: issue 39 [https://github.com/nedbat/coveragepy/issues/39].

	Added coverage.process_start to enable coverage measurement when Python
starts.

	Parallel data file names now have a random number appended to them in
addition to the machine name and process id.

	Parallel data files combined with “coverage combine” are deleted after
they’re combined, to clean up unneeded files. Fixes issue 40 [https://github.com/nedbat/coveragepy/issues/40].

	Exceptions thrown from product code run with “coverage run” are now displayed
without internal coverage.py frames, so the output is the same as when the
code is run without coverage.py.

	The data_suffix argument to the coverage constructor is now appended with
an added dot rather than simply appended, so that .coveragerc files will not
be confused for data files.

	Python source files that don’t end with a newline can now be executed, fixing
issue 47 [https://github.com/nedbat/coveragepy/issues/47].

	Added an AUTHORS.txt file.

Version 3.2 — 2009-12-05

	Added a --version option on the command line.

Version 3.2b4 — 2009-12-01

	Branch coverage improvements:

	The XML report now includes branch information.

	Click-to-sort HTML report columns are now persisted in a cookie. Viewing
a report will sort it first the way you last had a coverage report sorted.
Thanks, Chris Adams [http://chris.improbable.org].

	On Python 3.x, setuptools has been replaced by Distribute [https://pypi.org/project/distribute/].

Version 3.2b3 — 2009-11-23

	Fixed a memory leak in the C tracer that was introduced in 3.2b1.

	Branch coverage improvements:

	Branches to excluded code are ignored.

	The table of contents in the HTML report is now sortable: click the headers
on any column. Thanks, Chris Adams [http://chris.improbable.org].

Version 3.2b2 — 2009-11-19

	Branch coverage improvements:

	Classes are no longer incorrectly marked as branches: issue 32 [https://github.com/nedbat/coveragepy/issues/32].

	“except” clauses with types are no longer incorrectly marked as branches:
issue 35 [https://github.com/nedbat/coveragepy/issues/35].

	Fixed some problems syntax coloring sources with line continuations and
source with tabs: issue 30 [https://github.com/nedbat/coveragepy/issues/30] and issue 31 [https://github.com/nedbat/coveragepy/issues/31].

	The –omit option now works much better than before, fixing issue 14 [https://github.com/nedbat/coveragepy/issues/14] and
issue 33 [https://github.com/nedbat/coveragepy/issues/33]. Thanks, Danek Duvall.

Version 3.2b1 — 2009-11-10

	Branch coverage!

	XML reporting has file paths that let Cobertura find the source code.

	The tracer code has changed, it’s a few percent faster.

	Some exceptions reported by the command line interface have been cleaned up
so that tracebacks inside coverage.py aren’t shown. Fixes issue 23 [https://github.com/nedbat/coveragepy/issues/23].

Version 3.1 — 2009-10-04

	Source code can now be read from eggs. Thanks, Ross Lawley. Fixes
issue 25 [https://github.com/nedbat/coveragepy/issues/25].

Version 3.1b1 — 2009-09-27

	Python 3.1 is now supported.

	Coverage.py has a new command line syntax with sub-commands. This expands
the possibilities for adding features and options in the future. The old
syntax is still supported. Try “coverage help” to see the new commands.
Thanks to Ben Finney for early help.

	Added an experimental “coverage xml” command for producing coverage reports
in a Cobertura-compatible XML format. Thanks, Bill Hart.

	Added the –timid option to enable a simpler slower trace function that works
for DecoratorTools projects, including TurboGears. Fixed issue 12 [https://github.com/nedbat/coveragepy/issues/12] and
issue 13 [https://github.com/nedbat/coveragepy/issues/13].

	HTML reports show modules from other directories. Fixed issue 11 [https://github.com/nedbat/coveragepy/issues/11].

	HTML reports now display syntax-colored Python source.

	Programs that change directory will still write .coverage files in the
directory where execution started. Fixed issue 24 [https://github.com/nedbat/coveragepy/issues/24].

	Added a “coverage debug” command for getting diagnostic information about the
coverage.py installation.

Version 3.0.1 — 2009-07-07

	Removed the recursion limit in the tracer function. Previously, code that
ran more than 500 frames deep would crash. Fixed issue 9 [https://github.com/nedbat/coveragepy/issues/9].

	Fixed a bizarre problem involving pyexpat, whereby lines following XML parser
invocations could be overlooked. Fixed issue 10 [https://github.com/nedbat/coveragepy/issues/10].

	On Python 2.3, coverage.py could mis-measure code with exceptions being
raised. This is now fixed.

	The coverage.py code itself will now not be measured by coverage.py, and no
coverage.py modules will be mentioned in the nose –with-cover plug-in.
Fixed issue 8 [https://github.com/nedbat/coveragepy/issues/8].

	When running source files, coverage.py now opens them in universal newline
mode just like Python does. This lets it run Windows files on Mac, for
example.

Version 3.0 — 2009-06-13

	Fixed the way the Python library was ignored. Too much code was being
excluded the old way.

	Tabs are now properly converted in HTML reports. Previously indentation was
lost. Fixed issue 6 [https://github.com/nedbat/coveragepy/issues/6].

	Nested modules now get a proper flat_rootname. Thanks, Christian Heimes.

Version 3.0b3 — 2009-05-16

	Added parameters to coverage.__init__ for options that had been set on the
coverage object itself.

	Added clear_exclude() and get_exclude_list() methods for programmatic
manipulation of the exclude regexes.

	Added coverage.load() to read previously-saved data from the data file.

	Improved the finding of code files. For example, .pyc files that have been
installed after compiling are now located correctly. Thanks, Detlev
Offenbach.

	When using the object API (that is, constructing a coverage() object), data
is no longer saved automatically on process exit. You can re-enable it with
the auto_data=True parameter on the coverage() constructor. The module-level
interface still uses automatic saving.

Version 3.0b — 2009-04-30

HTML reporting, and continued refactoring.

	HTML reports and annotation of source files: use the new -b (browser) switch.
Thanks to George Song for code, inspiration and guidance.

	Code in the Python standard library is not measured by default. If you need
to measure standard library code, use the -L command-line switch during
execution, or the cover_pylib=True argument to the coverage() constructor.

	Source annotation into a directory (-a -d) behaves differently. The
annotated files are named with their hierarchy flattened so that same-named
files from different directories no longer collide. Also, only files in the
current tree are included.

	coverage.annotate_file is no longer available.

	Programs executed with -x now behave more as they should, for example,
__file__ has the correct value.

	.coverage data files have a new pickle-based format designed for better
extensibility.

	Removed the undocumented cache_file argument to coverage.usecache().

Version 3.0b1 — 2009-03-07

Major overhaul.

	Coverage.py is now a package rather than a module. Functionality has been
split into classes.

	The trace function is implemented in C for speed. Coverage.py runs are now
much faster. Thanks to David Christian for productive micro-sprints and
other encouragement.

	Executable lines are identified by reading the line number tables in the
compiled code, removing a great deal of complicated analysis code.

	Precisely which lines are considered executable has changed in some cases.
Therefore, your coverage stats may also change slightly.

	The singleton coverage object is only created if the module-level functions
are used. This maintains the old interface while allowing better
programmatic use of coverage.py.

	The minimum supported Python version is 2.3.

Version 2.85 — 2008-09-14

	Add support for finding source files in eggs. Don’t check for
morf’s being instances of ModuleType, instead use duck typing so that
pseudo-modules can participate. Thanks, Imri Goldberg.

	Use os.realpath as part of the fixing of file names so that symlinks won’t
confuse things. Thanks, Patrick Mezard.

Version 2.80 — 2008-05-25

	Open files in rU mode to avoid line ending craziness. Thanks, Edward Loper.

Version 2.78 — 2007-09-30

	Don’t try to predict whether a file is Python source based on the extension.
Extension-less files are often Pythons scripts. Instead, simply parse the
file and catch the syntax errors. Hat tip to Ben Finney.

Version 2.77 — 2007-07-29

	Better packaging.

Version 2.76 — 2007-07-23

	Now Python 2.5 is really fully supported: the body of the new with
statement is counted as executable.

Version 2.75 — 2007-07-22

	Python 2.5 now fully supported. The method of dealing with multi-line
statements is now less sensitive to the exact line that Python reports during
execution. Pass statements are handled specially so that their disappearance
during execution won’t throw off the measurement.

Version 2.7 — 2007-07-21

	“#pragma: nocover” is excluded by default.

	Properly ignore docstrings and other constant expressions that appear in the
middle of a function, a problem reported by Tim Leslie.

	coverage.erase() shouldn’t clobber the exclude regex. Change how parallel
mode is invoked, and fix erase() so that it erases the cache when called
programmatically.

	In reports, ignore code executed from strings, since we can’t do anything
useful with it anyway.

	Better file handling on Linux, thanks Guillaume Chazarain.

	Better shell support on Windows, thanks Noel O’Boyle.

	Python 2.2 support maintained, thanks Catherine Proulx.

	Minor changes to avoid lint warnings.

Version 2.6 — 2006-08-23

	Applied Joseph Tate’s patch for function decorators.

	Applied Sigve Tjora and Mark van der Wal’s fixes for argument handling.

	Applied Geoff Bache’s parallel mode patch.

	Refactorings to improve testability. Fixes to command-line logic for parallel
mode and collect.

Version 2.5 — 2005-12-04

	Call threading.settrace so that all threads are measured. Thanks Martin
Fuzzey.

	Add a file argument to report so that reports can be captured to a different
destination.

	Coverage.py can now measure itself.

	Adapted Greg Rogers’ patch for using relative file names, and sorting and
omitting files to report on.

Version 2.2 — 2004-12-31

	Allow for keyword arguments in the module global functions. Thanks, Allen.

Version 2.1 — 2004-12-14

	Return ‘analysis’ to its original behavior and add ‘analysis2’. Add a global
for ‘annotate’, and factor it, adding ‘annotate_file’.

Version 2.0 — 2004-12-12

Significant code changes.

	Finding executable statements has been rewritten so that docstrings and
other quirks of Python execution aren’t mistakenly identified as missing
lines.

	Lines can be excluded from consideration, even entire suites of lines.

	The file system cache of covered lines can be disabled programmatically.

	Modernized the code.

Earlier History

2001-12-04 GDR Created.

2001-12-06 GDR Added command-line interface and source code annotation.

2001-12-09 GDR Moved design and interface to separate documents.

2001-12-10 GDR Open cache file as binary on Windows. Allow simultaneous -e and
-x, or -a and -r.

2001-12-12 GDR Added command-line help. Cache analysis so that it only needs to
be done once when you specify -a and -r.

2001-12-13 GDR Improved speed while recording. Portable between Python 1.5.2
and 2.1.1.

2002-01-03 GDR Module-level functions work correctly.

2002-01-07 GDR Update sys.path when running a file with the -x option, so that
it matches the value the program would get if it were run on its own.

Migrating between versions

New versions of coverage.py or Python might require you to adjust your
settings, options, or other aspects how you use coverage.py. This page details
those changes.

Migrating to coverage.py 7.x

Consider these changes when migrating to coverage.py 7.x:

	The way that wildcards when specifying file paths work in certain cases has
changed in 7.x:

	Previously, * would incorrectly match directory separators, making
precise matching difficult. Patterns such as *tests/*
will need to be changed to */tests/*.

	** now matches any number of nested directories. If you wish to retain
the behavior of **/tests/* in previous versions then */**/tests/*
can be used instead.

	When remapping file paths with [paths], a path will be remapped only if
the resulting path exists. Ensure that remapped [paths] exist when
upgrading as this is now being enforced.

	The [report] exclude_also setting is new in 7.2.0. It adds
exclusion regexes while keeping the default built-in set. It’s better than
the older [report] exclude_lines setting, which overwrote the
entire list. Newer versions of coverage.py will be adding to the default set
of exclusions. Using exclude_also will let you benefit from those
updates.

Migrating to Python 3.12

Keep these things in mind when running under Python 3.12:

	Python 3.12 now inlines list, dict, and set comprehensions. Previously, they
were compiled as functions that were called internally. Coverage.py would
warn you if comprehensions weren’t fully completed, but this no longer
happens with Python 3.12.

Sleepy Snake

Coverage.py’s mascot is Sleepy Snake, drawn by Ben Batchelder. Ben’s art can
be found on Instagram [https://instagram.com/artofbatch] and at artofbatch.com [https://artofbatch.com]. Some details of Sleepy’s
creation are on Ned’s blog [https://nedbatchelder.com/blog/201912/sleepy_snake.html].

[image: Sleepy Snake, cozy in his snake-shaped bed.]

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 coverage	

 	
 	
 coverage.exceptions	

 	
 	
 coverage.numbits	

 	
 	
 coverage.plugin	

Major changes in 5.0

This is an overview of the changes in 5.0 since the last version of 4.5.x. This
is not a complete list of all changes. See the complete change history for all the details.

Open Questions

	How to support SQL access to data? The database schema has to be convenient
and efficient for coverage.py’s execution, which would naturally make it an
internal implementation detail. But the coverage data is now more complex,
and SQL access could be a powerful way to access it, pointing toward a public
guaranteed schema. What’s the right balance?

Backward Incompatibilities

	Python 2.6, 3.3 and 3.4 are no longer supported.

	The CoverageData interface is still public, but has changed.

	The data file is now created earlier than it used to be. In some
circumstances, you may need to use parallel=true to avoid multiple
processes overwriting each others’ data.

	When constructing a coverage.Coverage object, data_file can be
specified as None to prevent writing any data file at all. In previous
versions, an explicit data_file=None argument would use the default of
“.coverage”. Fixes issue 871 [https://github.com/nedbat/coveragepy/issues/871].

	The [run] note setting has been deprecated. Using it will result in a
warning, and the note will not be written to the data file. The
corresponding CoverageData methods have been removed.

	The deprecated Reporter.file_reporters property has been removed.

	The reporting methods used to permanently apply their arguments to the
configuration of the Coverage object. Now they no longer do. The arguments
affect the operation of the method, but do not persist.

	Many internal attributes and functions were changed. These were not part of
the public supported API. If your code used them, it might now stop working.

New Features

	Coverage.py can now record the context in which each line was executed. The
contexts are stored in the data file and can be used to drill down into why a
particular line was run. Static contexts let you specify a label for an
entire coverage run, for example to separate coverage for different operating
systems or versions of Python. Dynamic contexts can change during a single
measurement run. This can be used to record the names of the tests that
executed each line. See Measurement contexts for full information.

	Coverage’s data storage has changed. In version 4.x, .coverage files were
basically JSON. Now, they are SQLite databases. The database schema is
documented (Coverage.py database schema), but might still be in flux.

	Data can now be “reported” in JSON format, for programmatic use, as requested
in issue 720 [https://github.com/nedbat/coveragepy/issues/720]. The new coverage json command writes raw and
summarized data to a JSON file. Thanks, Matt Bachmann.

	Configuration can now be read from TOML [https://toml.io/] files. This requires installing
coverage.py with the [toml] extra. The standard “pyproject.toml” file
will be read automatically if no other configuration file is found, with
settings in the [tool.coverage.] namespace. Thanks to Frazer McLean for
implementation and persistence. Finishes issue 664 [https://github.com/nedbat/coveragepy/issues/664].

	The HTML and textual reports now have a --skip-empty option that skips
files with no statements, notably __init__.py files. Thanks, Reya B.

	You can specify the command line to run your program with the [run]
command_line configuration setting, as requested in issue 695 [https://github.com/nedbat/coveragepy/issues/695].

	An experimental [run] relative_files setting tells coverage to store
relative file names in the data file. This makes it easier to run tests in
one (or many) environments, and then report in another. It has not had much
real-world testing, so it may change in incompatible ways in the future.

	Environment variable substitution in configuration files now supports two
syntaxes for controlling the behavior of undefined variables: if VARNAME
is not defined, ${VARNAME?} will raise an error, and ${VARNAME-default
value} will use “default value”.

	The location of the configuration file can now be specified with a
COVERAGE_RCFILE environment variable, as requested in issue 650 [https://github.com/nedbat/coveragepy/issues/650].

	A new warning (already-imported) is issued if measurable files have
already been imported before coverage.py started measurement. See
Warnings for more information.

	Error handling during reporting has changed slightly. All reporting methods
now behave the same. The --ignore-errors option keeps errors from
stopping the reporting, but files that couldn’t parse as Python will always
be reported as warnings. As with other warnings, you can suppress them with
the [run] disable_warnings configuration setting.

	Added the classmethod Coverage.current() to get the latest started
Coverage instance.

Bugs Fixed

	The coverage run command has always adjusted the first entry in sys.path,
to properly emulate how Python runs your program. Now this adjustment is
skipped if sys.path[0] is already different than Python’s default. This
fixes issue 715 [https://github.com/nedbat/coveragepy/issues/715].

	Python files run with -m now have __spec__ defined properly. This
fixes issue 745 [https://github.com/nedbat/coveragepy/issues/745] (about not being able to run unittest tests that spawn
subprocesses), and issue 838 [https://github.com/nedbat/coveragepy/issues/838], which described the problem directly.

	Coverage will create directories as needed for the data file if they don’t
exist, closing issue 721 [https://github.com/nedbat/coveragepy/issues/721].

	fail_under values more than 100 are reported as errors. Thanks to Mike
Fiedler for closing issue 746 [https://github.com/nedbat/coveragepy/issues/746].

	The “missing” values in the text output are now sorted by line number, so
that missing branches are reported near the other lines they affect. The
values used to show all missing lines, and then all missing branches.

	Coverage.py no longer fails if the user program deletes its current
directory. Fixes issue 806 [https://github.com/nedbat/coveragepy/issues/806]. Thanks, Dan Hemberger.

 _static/file.png

_static/sleepy-snake-circle-150.png
®

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Coverage.py

 		
 Installation

 		
 C Extension

 		
 Checking the installation

 		
 Command line usage

 		
 Execution: coverage run

 		
 Warnings

 		
 Data file

 		
 Combining data files: coverage combine

 		
 Re-mapping paths

 		
 Erase data: coverage erase

 		
 Reporting

 		
 Coverage summary: coverage report

 		
 HTML reporting: coverage html

 		
 XML reporting: coverage xml

 		
 JSON reporting: coverage json

 		
 LCOV reporting: coverage lcov

 		
 Text annotation: coverage annotate

 		
 Diagnostics: coverage debug

 		
 –debug

 		
 Configuration reference

 		
 Syntax

 		
 [run]

 		
 [run] branch

 		
 [run] command_line

 		
 [run] concurrency

 		
 [run] context

 		
 [run] cover_pylib

 		
 [run] data_file

 		
 [run] disable_warnings

 		
 [run] debug

 		
 [run] debug_file

 		
 [run] dynamic_context

 		
 [run] include

 		
 [run] omit

 		
 [run] parallel

 		
 [run] plugins

 		
 [run] relative_files

 		
 [run] sigterm

 		
 [run] source

 		
 [run] source_pkgs

 		
 [run] timid

 		
 [paths]

 		
 [report]

 		
 [report] exclude_also

 		
 [report] exclude_lines

 		
 [report] fail_under

 		
 [report] ignore_errors

 		
 [report] include

 		
 [report] include_namespace_packages

 		
 [report] omit

 		
 [report] partial_branches

 		
 [report] precision

 		
 [report] show_missing

 		
 [report] skip_covered

 		
 [report] skip_empty

 		
 [report] sort

 		
 [html]

 		
 [html] directory

 		
 [html] extra_css

 		
 [html] show_contexts

 		
 [html] skip_covered

 		
 [html] skip_empty

 		
 [html] title

 		
 [xml]

 		
 [xml] output

 		
 [xml] package_depth

 		
 [json]

 		
 [json] output

 		
 [json] pretty_print

 		
 [json] show_contexts

 		
 [lcov]

 		
 [lcov] output

 		
 Specifying source files

 		
 Execution

 		
 Reporting

 		
 File patterns

 		
 Excluding code from coverage.py

 		
 Branch coverage

 		
 Advanced exclusion

 		
 Excluding source files

 		
 Branch coverage measurement

 		
 How to measure branch coverage

 		
 How it works

 		
 Excluding code

 		
 Structurally partial branches

 		
 Measuring sub-processes

 		
 Configuring Python for sub-process measurement

 		
 Process termination

 		
 Measurement contexts

 		
 Static contexts

 		
 Dynamic contexts

 		
 Context reporting

 		
 Raw data

 		
 Coverage.py API

 		
 The Coverage class

 		
 Coverage

 		
 Coverage exceptions

 		
 CoverageException

 		
 coverage module

 		
 version_info

 		
 __version__

 		
 CoverageException

 		
 Starting coverage.py automatically

 		
 Plug-in classes

 		
 File Tracers

 		
 Configurers

 		
 Dynamic Context Switchers

 		
 The CoveragePlugin class

 		
 The FileTracer class

 		
 The FileReporter class

 		
 The CoverageData class

 		
 CoverageData

 		
 Coverage.py database schema

 		
 Database schema

 		
 Numbits

 		
 How coverage.py works

 		
 Execution

 		
 Plugins

 		
 Dynamic contexts

 		
 Analysis

 		
 Reporting

 		
 Plug-ins

 		
 Using plug-ins

 		
 Available plug-ins

 		
 Contributing to coverage.py

 		
 Before you begin

 		
 Getting the code

 		
 Running the tests

 		
 Lint, etc

 		
 Continuous integration

 		
 Dependencies

 		
 Coverage testing coverage.py

 		
 Contributing

 		
 Things that cause trouble

 		
 Things that don’t work

 		
 Still having trouble?

 		
 FAQ and other help

 		
 Frequently asked questions

 		
 Q: Why are some of my files not measured?

 		
 Q: Why do unexecutable lines show up as executed?

 		
 Q: Why are my function definitions marked as run when I haven’t tested them?

 		
 Q: Why do the bodies of functions show as executed, but the def lines do not?

 		
 Q: My decorator lines are marked as covered, but the “def” line is not. Why?

 		
 Q: Can I find out which tests ran which lines?

 		
 Q: How is the total percentage calculated?

 		
 Q: Coverage.py is much slower than I remember, what’s going on?

 		
 Q: Isn’t coverage testing the best thing ever?

 		
 Q: Where can I get more help with coverage.py?

 		
 History

 		
 Change history

 		
 Version 7.2.6 — 2023-05-23

 		
 Version 7.2.5 — 2023-04-30

 		
 Version 7.2.4 — 2023-04-28

 		
 Version 7.2.3 — 2023-04-06

 		
 Version 7.2.2 — 2023-03-16

 		
 Version 7.2.1 — 2023-02-26

 		
 Version 7.2.0 — 2023-02-22

 		
 Version 7.1.0 — 2023-01-24

 		
 Version 7.0.5 — 2023-01-10

 		
 Version 7.0.4 — 2023-01-07

 		
 Version 7.0.3 — 2023-01-03

 		
 Version 7.0.2 — 2023-01-02

 		
 Version 7.0.1 — 2022-12-23

 		
 Version 7.0.0 — 2022-12-18

 		
 Version 7.0.0b1 — 2022-12-03

 		
 Version 6.6.0b1 — 2022-10-31

 		
 Version 6.5.0 — 2022-09-29

 		
 Version 6.4.4 — 2022-08-16

 		
 Version 6.4.3 — 2022-08-06

 		
 Version 6.4.2 — 2022-07-12

 		
 Version 6.4.1 — 2022-06-02

 		
 Version 6.4 — 2022-05-22

 		
 Version 6.3.3 — 2022-05-12

 		
 Version 6.3.2 — 2022-02-20

 		
 Version 6.3.1 — 2022-02-01

 		
 Version 6.3 — 2022-01-25

 		
 Version 6.2 — 2021-11-26

 		
 Version 6.1.2 — 2021-11-10

 		
 Version 6.1.1 — 2021-10-31

 		
 Version 6.1 — 2021-10-30

 		
 Version 6.0.2 — 2021-10-11

 		
 Version 6.0.1 — 2021-10-06

 		
 Version 6.0 — 2021-10-03

 		
 Version 6.0b1 — 2021-07-18

 		
 Version 5.6b1 — 2021-04-13

 		
 Version 5.5 — 2021-02-28

 		
 Version 5.4 — 2021-01-24

 		
 Version 5.3.1 — 2020-12-19

 		
 Version 5.3 — 2020-09-13

 		
 Version 5.2.1 — 2020-07-23

 		
 Version 5.2 — 2020-07-05

 		
 Version 5.1 — 2020-04-12

 		
 Version 5.0.4 — 2020-03-16

 		
 Version 5.0.3 — 2020-01-12

 		
 Version 5.0.2 — 2020-01-05

 		
 Version 5.0.1 — 2019-12-22

 		
 Version 5.0 — 2019-12-14

 		
 Version 5.0b2 — 2019-12-08

 		
 Version 5.0b1 — 2019-11-11

 		
 Version 5.0a8 — 2019-10-02

 		
 Version 5.0a7 — 2019-09-21

 		
 Version 5.0a6 — 2019-07-16

 		
 Version 5.0a5 — 2019-05-07

 		
 Version 5.0a4 — 2018-11-25

 		
 Version 5.0a3 — 2018-10-06

 		
 Version 5.0a2 — 2018-09-03

 		
 Version 5.0a1 — 2018-06-05

 		
 Version 4.5.4 — 2019-07-29

 		
 Version 4.5.3 — 2019-03-09

 		
 Version 4.5.2 — 2018-11-12

 		
 Version 4.5.1 — 2018-02-10

 		
 Version 4.5 — 2018-02-03

 		
 Version 4.4.2 — 2017-11-05

 		
 Version 4.4.1 — 2017-05-14

 		
 Version 4.4 — 2017-05-07

 		
 Version 4.4b1 — 2017-04-04

 		
 Version 4.3.4 — 2017-01-17

 		
 Version 4.3.3 — 2017-01-17

 		
 Version 4.3.2 — 2017-01-16

 		
 Version 4.3.1 — 2016-12-28

 		
 Version 4.3 — 2016-12-27

 		
 Version 4.2 — 2016-07-26

 		
 Version 4.2b1 — 2016-07-04

 		
 Version 4.1 — 2016-05-21

 		
 Version 4.1b3 — 2016-05-10

 		
 Version 4.1b2 — 2016-01-23

 		
 Version 4.1b1 — 2016-01-10

 		
 Version 4.0.3 — 2015-11-24

 		
 Version 4.0.2 — 2015-11-04

 		
 Version 4.0.1 — 2015-10-13

 		
 Version 4.0 — 2015-09-20

 		
 Version 4.0b3 — 2015-09-07

 		
 Version 4.0b2 — 2015-08-22

 		
 Version 4.0b1 — 2015-08-02

 		
 Version 4.0a6 — 2015-06-21

 		
 Version 4.0a5 — 2015-02-16

 		
 Version 4.0a4 — 2015-01-25

 		
 Version 4.0a3 — 2015-01-20

 		
 Version 4.0a2 — 2015-01-14

 		
 Version 4.0a1 — 2014-09-27

 		
 Version 3.7.1 — 2013-12-13

 		
 Version 3.7 — 2013-10-06

 		
 Version 3.6 — 2013-01-05

 		
 Version 3.6b3 — 2012-12-29

 		
 Version 3.6b2 — 2012-12-23

 		
 Version 3.6b1 — 2012-11-28

 		
 Version 3.5.3 — 2012-09-29

 		
 Version 3.5.2 — 2012-05-04

 		
 Version 3.5.2b1 — 2012-04-29

 		
 Version 3.5.1 — 2011-09-23

 		
 Version 3.5.1b1 — 2011-08-28

 		
 Version 3.5 — 2011-06-29

 		
 Version 3.5b1 — 2011-06-05

 		
 Version 3.4 — 2010-09-19

 		
 Version 3.4b2 — 2010-09-06

 		
 Version 3.4b1 — 2010-08-21

 		
 Version 3.3.1 — 2010-03-06

 		
 Version 3.3 — 2010-02-24

 		
 Version 3.2 — 2009-12-05

 		
 Version 3.2b4 — 2009-12-01

 		
 Version 3.2b3 — 2009-11-23

 		
 Version 3.2b2 — 2009-11-19

 		
 Version 3.2b1 — 2009-11-10

 		
 Version 3.1 — 2009-10-04

 		
 Version 3.1b1 — 2009-09-27

 		
 Version 3.0.1 — 2009-07-07

 		
 Version 3.0 — 2009-06-13

 		
 Version 3.0b3 — 2009-05-16

 		
 Version 3.0b — 2009-04-30

 		
 Version 3.0b1 — 2009-03-07

 		
 Version 2.85 — 2008-09-14

 		
 Version 2.80 — 2008-05-25

 		
 Version 2.78 — 2007-09-30

 		
 Version 2.77 — 2007-07-29

 		
 Version 2.76 — 2007-07-23

 		
 Version 2.75 — 2007-07-22

 		
 Version 2.7 — 2007-07-21

 		
 Version 2.6 — 2006-08-23

 		
 Version 2.5 — 2005-12-04

 		
 Version 2.2 — 2004-12-31

 		
 Version 2.1 — 2004-12-14

 		
 Version 2.0 — 2004-12-12

 		
 Earlier History

 		
 Migrating between versions

 		
 Migrating to coverage.py 7.x

 		
 Migrating to Python 3.12

 		
 Sleepy Snake

_images/sleepy-snake-600.png

_images/Tidelift_Logos_RGB_Tidelift_Shorthand_On-White.png
L -
ﬂ'

